Struct image::ImageBuffer
[−]
[src]
pub struct ImageBuffer<P: Pixel, Container> { // some fields omitted }
Generic image buffer
Methods
impl<P, Container> ImageBuffer<P, Container> where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref<Target=[P::Subpixel]>
fn from_raw(width: u32, height: u32, buf: Container) -> Option<ImageBuffer<P, Container>>
Contructs a buffer from a generic container
(for example a Vec
or a slice)
Returns None if the container is not big enough
fn into_raw(self) -> Container
Returns the underlying raw buffer
fn dimensions(&self) -> (u32, u32)
The width and height of this image.
fn width(&self) -> u32
The width of this image.
fn height(&self) -> u32
The height of this image.
fn pixels<'a>(&'a self) -> Pixels<'a, P>
Returns an iterator over the pixels of this image.
fn enumerate_pixels<'a>(&'a self) -> EnumeratePixels<'a, P>
Enumerates over the pixels of the image. The iterator yields the coordinates of each pixel along with a reference to them.
fn get_pixel(&self, x: u32, y: u32) -> &P
Gets a reference to the pixel at location (x, y)
Panics
Panics if (x, y)
is out of the bounds (width, height)
.
impl<P, Container> ImageBuffer<P, Container> where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref<Target=[P::Subpixel]> + DerefMut
fn pixels_mut(&mut self) -> PixelsMut<P>
Returns an iterator over the mutable pixels of this image. The iterator yields the coordinates of each pixel along with a mutable reference to them.
fn enumerate_pixels_mut<'a>(&'a mut self) -> EnumeratePixelsMut<'a, P>
Enumerates over the pixels of the image.
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut P
Gets a reference to the mutable pixel at location (x, y)
Panics
Panics if (x, y)
is out of the bounds (width, height)
.
fn put_pixel(&mut self, x: u32, y: u32, pixel: P)
impl<P, Container> ImageBuffer<P, Container> where P: Pixel<Subpixel=u8> + 'static, Container: Deref<Target=[u8]>
fn save<Q>(&self, path: Q) -> Result<()> where Q: AsRef<Path>
Saves the buffer to a file at the path specified.
The image format is derived from the file extension. Currently only jpeg and png files are supported.
impl<P: Pixel + 'static> ImageBuffer<P, Vec<P::Subpixel>> where P::Subpixel: 'static
fn new(width: u32, height: u32) -> ImageBuffer<P, Vec<P::Subpixel>>
Creates a new image buffer based on a Vec<P::Subpixel>
.
fn from_pixel(width: u32, height: u32, pixel: P) -> ImageBuffer<P, Vec<P::Subpixel>>
Constructs a new ImageBuffer by copying a pixel
fn from_fn<F>(width: u32, height: u32, f: F) -> ImageBuffer<P, Vec<P::Subpixel>> where F: Fn(u32, u32) -> P
Constructs a new ImageBuffer by repeated application of the supplied function. The arguments to the function are the pixel's x and y coordinates.
fn from_vec(width: u32, height: u32, buf: Vec<P::Subpixel>) -> Option<ImageBuffer<P, Vec<P::Subpixel>>>
Creates an image buffer out of an existing buffer. Returns None if the buffer is not big enough.
fn into_vec(self) -> Vec<P::Subpixel>
Consumes the image buffer and returns the underlying data as an owned buffer
Methods from Deref<Target=[P::Subpixel]>
1.0.0fn len(&self) -> usize
1.0.0fn is_empty(&self) -> bool
1.0.0fn first(&self) -> Option<&T>
Returns the first element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
1.0.0fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of a slice, or None
if it is empty
1.5.0fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of a slice.
1.5.0fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the first and all the rest of the elements of a slice.
1.5.0fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of a slice.
1.5.0fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the last and all the rest of the elements of a slice.
1.0.0fn last(&self) -> Option<&T>
Returns the last element of a slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
1.0.0fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the last item in the slice.
1.0.0fn get(&self, index: usize) -> Option<&T>
Returns the element of a slice at the given index, or None
if the
index is out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3));
1.0.0fn get_mut(&mut self, index: usize) -> Option<&mut T>
Returns a mutable reference to the element at the given index,
or None
if the index is out of bounds
1.0.0unsafe fn get_unchecked(&self, index: usize) -> &T
Returns a pointer to the element at the given index, without doing bounds checking.
1.0.0unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
Returns an unsafe mutable pointer to the element in index
1.0.0fn as_ptr(&self) -> *const T
Returns an raw pointer to the slice's buffer
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
1.0.0fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
1.0.0fn swap(&mut self, a: usize, b: usize)
Swaps two elements in a slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
or b
are out of bounds.
Example
let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
1.0.0fn reverse(&mut self)
Reverse the order of elements in a slice, in place.
Example
let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
1.0.0fn iter(&self) -> Iter<T>
Returns an iterator over the slice.
1.0.0fn iter_mut(&mut self) -> IterMut<T>
Returns an iterator that allows modifying each value
1.0.0fn windows(&self, size: usize) -> Windows<T>
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Example
Print the adjacent pairs of a slice (i.e. [1,2]
, [2,3]
,
[3,4]
):
let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); }
1.0.0fn chunks(&self, size: usize) -> Chunks<T>
Returns an iterator over size
elements of the slice at a
time. The chunks are slices and do not overlap. If size
does not divide the
length of the slice, then the last chunk will not have length
size
.
Panics
Panics if size
is 0.
Example
Print the slice two elements at a time (i.e. [1,2]
,
[3,4]
, [5]
):
let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); }
1.0.0fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
Returns an iterator over chunk_size
elements of the slice at a time.
The chunks are mutable slices, and do not overlap. If chunk_size
does
not divide the length of the slice, then the last chunk will not
have length chunk_size
.
Panics
Panics if chunk_size
is 0.
1.0.0fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);
1.0.0fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one &mut
into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Example
let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
1.0.0fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
Print the slice split by numbers divisible by 3 (i.e. [10, 40]
,
[20]
, [50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); }
1.0.0fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
1.0.0fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
1.0.0fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
1.0.0fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
1.0.0fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
1.0.0fn contains(&self, x: &T) -> bool where T: PartialEq<T>
Returns true if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
1.0.0fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
Returns true if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
1.0.0fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq<T>
Returns true if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
1.0.0fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord
Binary search a sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
1.0.0fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering
Binary search a sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
fn binary_search_by_key<B, F>(&self, b: &B, f: F) -> Result<usize, usize> where B: Ord, F: FnMut(&T) -> B
slice_binary_search_by_key
): recently added
Binary search a sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1,4]
.
#![feature(slice_binary_search_by_key)] let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });
1.0.0fn sort(&mut self) where T: Ord
Sorts the slice, in place.
This is equivalent to self.sort_by(|a, b| a.cmp(b))
.
This is a stable sort.
Examples
let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);
1.7.0fn sort_by_key<B, F>(&mut self, f: F) where F: FnMut(&T) -> B, B: Ord
Sorts the slice, in place, using key
to extract a key by which to
order the sort by.
This sort is O(n log n)
worst-case and stable, but allocates
approximately 2 * n
, where n
is the length of self
.
This is a stable sort.
Examples
let mut v = [-5i32, 4, 1, -3, 2]; v.sort_by_key(|k| k.abs()); assert!(v == [1, 2, -3, 4, -5]);
1.0.0fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
Sorts the slice, in place, using compare
to compare
elements.
This sort is O(n log n)
worst-case and stable, but allocates
approximately 2 * n
, where n
is the length of self
.
Examples
let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
1.7.0fn clone_from_slice(&mut self, src: &[T]) where T: Clone
Copies the elements from src
into self
.
The length of this slice must be the same as the slice passed in.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.clone_from_slice(&src); assert!(dst == [1, 2, 3]);
1.9.0fn copy_from_slice(&mut self, src: &[T]) where T: Copy
Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
Panics
This function will panic if the two slices have different lengths.
Example
let mut dst = [0, 0, 0]; let src = [1, 2, 3]; dst.copy_from_slice(&src); assert_eq!(src, dst);
1.0.0fn to_vec(&self) -> Vec<T> where T: Clone
Copies self
into a new Vec
.
1.0.0fn into_vec(self: Box<[T]>) -> Vec<T>
Converts self
into a vector without clones or allocation.
Trait Implementations
impl<P, Container> Deref for ImageBuffer<P, Container> where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref<Target=[P::Subpixel]>
impl<P, Container> DerefMut for ImageBuffer<P, Container> where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref<Target=[P::Subpixel]> + DerefMut
fn deref_mut<'a>(&'a mut self) -> &'a mut Self::Target
impl<P, Container> Index<(u32, u32)> for ImageBuffer<P, Container> where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref<Target=[P::Subpixel]>
impl<P, Container> IndexMut<(u32, u32)> for ImageBuffer<P, Container> where P: Pixel + 'static, P::Subpixel: 'static, Container: Deref<Target=[P::Subpixel]> + DerefMut
impl<P, Container> Clone for ImageBuffer<P, Container> where P: Pixel, Container: Deref<Target=[P::Subpixel]> + Clone
fn clone(&self) -> ImageBuffer<P, Container>
1.0.0fn clone_from(&mut self, source: &Self)
impl<P, Container> GenericImage for ImageBuffer<P, Container> where P: Pixel + 'static, Container: Deref<Target=[P::Subpixel]> + DerefMut, P::Subpixel: 'static
type Pixel = P
fn dimensions(&self) -> (u32, u32)
fn bounds(&self) -> (u32, u32, u32, u32)
fn get_pixel(&self, x: u32, y: u32) -> P
fn get_pixel_mut(&mut self, x: u32, y: u32) -> &mut P
unsafe fn unsafe_get_pixel(&self, x: u32, y: u32) -> P
Returns the pixel located at (x, y), ignoring bounds checking.
fn put_pixel(&mut self, x: u32, y: u32, pixel: P)
unsafe fn unsafe_put_pixel(&mut self, x: u32, y: u32, pixel: P)
Puts a pixel at location (x, y), ignoring bounds checking.
fn blend_pixel(&mut self, x: u32, y: u32, p: P)
Put a pixel at location (x, y), taking into account alpha channels
DEPRECATED: This method will be removed. Blend the pixel directly instead.