Trait collenchyma_nn::Sigmoid
[−]
[src]
pub trait Sigmoid<F>: NN<F> {
fn sigmoid(&self, x: &mut SharedTensor<F>, result: &mut SharedTensor<F>) -> Result<(), Error>;
fn sigmoid_plain(&self, x: &SharedTensor<F>, result: &mut SharedTensor<F>) -> Result<(), Error>;
fn sigmoid_grad(&self, x: &mut SharedTensor<F>, x_diff: &mut SharedTensor<F>, result: &mut SharedTensor<F>, result_diff: &mut SharedTensor<F>) -> Result<(), Error>;
fn sigmoid_grad_plain(&self, x: &SharedTensor<F>, x_diff: &SharedTensor<F>, result: &SharedTensor<F>, result_diff: &mut SharedTensor<F>) -> Result<(), Error>;
}Provides the functionality for a Backend to support Sigmoid operations.
Required Methods
fn sigmoid(&self, x: &mut SharedTensor<F>, result: &mut SharedTensor<F>) -> Result<(), Error>
Computes the Sigmoid function over the input Tensor x with complete memory management.
Saves the result to result.
For a no-memory managed version see sigmoid_plain.
fn sigmoid_plain(&self, x: &SharedTensor<F>, result: &mut SharedTensor<F>) -> Result<(), Error>
Computes the Sigmoid function over the input Tensor x without any memory management.
Saves the result to result.
Attention:
For a correct computation result, you need to manage the memory allocation and synchronization yourself.
For a memory managed version see sigmoid.
fn sigmoid_grad(&self, x: &mut SharedTensor<F>, x_diff: &mut SharedTensor<F>, result: &mut SharedTensor<F>, result_diff: &mut SharedTensor<F>) -> Result<(), Error>
Computes the gradient of a Sigmoid function over the input Tensor x with complete memory management.
Saves the result to result_diff.
For a no-memory managed version see sigmoid_grad_plain.
fn sigmoid_grad_plain(&self, x: &SharedTensor<F>, x_diff: &SharedTensor<F>, result: &SharedTensor<F>, result_diff: &mut SharedTensor<F>) -> Result<(), Error>
Computes the gradient of a Sigmoid function over the input Tensor x without any memory management.
Saves the result to result_diff.
Attention:
For a correct computation result, you need to manage the memory allocation and synchronization yourself.
For a memory managed version see sigmoid_grad.