1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
use super::*;
use super::len::*;
use super::internal::*;

pub struct Filter<M, FILTER_OP> {
    base: M,
    filter_op: FILTER_OP,
}

impl<M, FILTER_OP> Filter<M, FILTER_OP> {
    pub fn new(base: M, filter_op: FILTER_OP) -> Filter<M, FILTER_OP> {
        Filter { base: base, filter_op: filter_op }
    }
}

impl<M, FILTER_OP> ParallelIterator for Filter<M, FILTER_OP>
    where M: ParallelIterator,
          FILTER_OP: Fn(&M::Item) -> bool + Sync,
{
    type Item = M::Item;

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
        where C: UnindexedConsumer<Self::Item>
    {
        let consumer1 = FilterConsumer::new(consumer, &self.filter_op);
        self.base.drive_unindexed(consumer1)
    }
}

impl<M, FILTER_OP> BoundedParallelIterator for Filter<M, FILTER_OP>
    where M: BoundedParallelIterator,
          FILTER_OP: Fn(&M::Item) -> bool + Sync
{
    fn upper_bound(&mut self) -> usize {
        self.base.upper_bound()
    }

    fn drive<C>(self, consumer: C) -> C::Result
        where C: Consumer<Self::Item>
    {
        let consumer1 = FilterConsumer::new(consumer, &self.filter_op);
        self.base.drive(consumer1)
    }
}

///////////////////////////////////////////////////////////////////////////
// Consumer implementation

struct FilterConsumer<'f, C, FILTER_OP: 'f> {
    base: C,
    filter_op: &'f FILTER_OP,
}

impl<'f, C, FILTER_OP> FilterConsumer<'f, C, FILTER_OP> {
    fn new(base: C, filter_op: &'f FILTER_OP) -> Self {
        FilterConsumer { base: base, filter_op: filter_op }
    }
}

impl<'f, ITEM, C, FILTER_OP: 'f> Consumer<ITEM> for FilterConsumer<'f, C, FILTER_OP>
    where C: Consumer<ITEM>, FILTER_OP: Fn(&ITEM) -> bool + Sync,
{
    type Folder = FilterFolder<'f, C::Folder, FILTER_OP>;
    type Reducer = C::Reducer;
    type Result = C::Result;

    /// Cost to process `items` number of items.
    fn cost(&mut self, cost: f64) -> f64 {
        self.base.cost(cost) * FUNC_ADJUSTMENT
    }

    fn split_at(self, index: usize) -> (Self, Self, C::Reducer) {
        let (left, right, reducer) = self.base.split_at(index);
        (FilterConsumer::new(left, self.filter_op),
         FilterConsumer::new(right, self.filter_op),
         reducer)
    }

    fn into_folder(self) -> Self::Folder {
        FilterFolder { base: self.base.into_folder(), filter_op: self.filter_op, }
    }
}


impl<'f, ITEM, C, FILTER_OP: 'f> UnindexedConsumer<ITEM>
    for FilterConsumer<'f, C, FILTER_OP>
    where C: UnindexedConsumer<ITEM>, FILTER_OP: Fn(&ITEM) -> bool + Sync,
{
    fn split_off(&self) -> Self {
        FilterConsumer::new(self.base.split_off(), &self.filter_op)
    }

    fn to_reducer(&self) -> Self::Reducer {
        self.base.to_reducer()
    }
}

struct FilterFolder<'f, C, FILTER_OP: 'f> {
    base: C,
    filter_op: &'f FILTER_OP,
}

impl<'f, C, FILTER_OP, ITEM> Folder<ITEM> for FilterFolder<'f, C, FILTER_OP>
    where C: Folder<ITEM>, FILTER_OP: Fn(&ITEM) -> bool + 'f
{
    type Result = C::Result;

    fn consume(self, item: ITEM) -> Self {
        let filter_op = self.filter_op;
        if filter_op(&item) {
            let base = self.base.consume(item);
            FilterFolder { base: base, filter_op: filter_op }
        } else {
            self
        }
    }

    fn complete(self) -> Self::Result {
        self.base.complete()
    }
}