1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
use std::cmp::{
max,
min
};
use math::utils::clamp;
const CHANNELS: usize = 4;
const RADIUS_DEC: i32 = 30;
const ALPHA_BIASSHIFT: i32 = 10;
const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT;
const GAMMA: f64 = 1024.0;
const BETA: f64 = 1.0 / GAMMA;
const BETAGAMMA: f64 = BETA * GAMMA;
const PRIMES: [usize; 4] = [499, 491, 478, 503];
#[derive(Clone, Copy)]
struct Quad<T> {
r: T,
g: T,
b: T,
a: T,
}
type Neuron = Quad<f64>;
type Color = Quad<i32>;
pub struct NeuQuant {
network: Vec<Neuron>,
colormap: Vec<Color>,
netindex: Vec<usize>,
bias: Vec<f64>,
freq: Vec<f64>,
samplefac: i32,
netsize: usize,
}
impl NeuQuant {
pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
let netsize = colors;
let mut this = NeuQuant {
network: Vec::with_capacity(netsize),
colormap: Vec::with_capacity(netsize),
netindex: vec![0; 256],
bias: Vec::with_capacity(netsize),
freq: Vec::with_capacity(netsize),
samplefac: samplefac,
netsize: colors
};
this.init(pixels);
this
}
pub fn init(&mut self, pixels: &[u8]) {
self.network.clear();
self.colormap.clear();
self.bias.clear();
self.freq.clear();
let freq = (self.netsize as f64).recip();
for i in 0..self.netsize {
let tmp = (i as f64) * 256.0 / (self.netsize as f64);
let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
self.network.push(Neuron { r: tmp, g: tmp, b: tmp, a: a});
self.colormap.push(Color { r: 0, g: 0, b: 0, a: 255 });
self.freq.push(freq);
self.bias.push(0.0);
}
self.learn(pixels);
self.build_colormap();
self.inxbuild();
}
#[inline(always)]
pub fn map_pixel(&self, pixel: &mut [u8]) {
assert!(pixel.len() == 4);
match (pixel[0], pixel[1], pixel[2], pixel[3]) {
(r, g, b, a) => {
let i = self.inxsearch(b, g, r, a);
pixel[0] = self.colormap[i].r as u8;
pixel[1] = self.colormap[i].g as u8;
pixel[2] = self.colormap[i].b as u8;
pixel[3] = self.colormap[i].a as u8;
}
}
}
#[inline(always)]
pub fn index_of(&self, pixel: &[u8]) -> usize {
assert!(pixel.len() == 4);
match (pixel[0], pixel[1], pixel[2], pixel[3]) {
(r, g, b, a) => {
self.inxsearch(b, g, r, a)
}
}
}
fn altersingle(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
let n = &mut self.network[i as usize];
n.b -= alpha * (n.b - quad.b);
n.g -= alpha * (n.g - quad.g);
n.r -= alpha * (n.r - quad.r);
n.a -= alpha * (n.a - quad.a);
}
fn alterneigh(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
let lo = max(i - rad, 0);
let hi = min(i + rad, self.netsize as i32);
let mut j = i + 1;
let mut k = i - 1;
let mut q = 0;
while (j < hi) || (k > lo) {
let rad_sq = rad as f64 * rad as f64;
let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq;
q += 1;
if j < hi {
let p = &mut self.network[j as usize];
p.b -= alpha * (p.b - quad.b);
p.g -= alpha * (p.g - quad.g);
p.r -= alpha * (p.r - quad.r);
p.a -= alpha * (p.a - quad.a);
j += 1;
}
if k > lo {
let p = &mut self.network[k as usize];
p.b -= alpha * (p.b - quad.b);
p.g -= alpha * (p.g - quad.g);
p.r -= alpha * (p.r - quad.r);
p.a -= alpha * (p.a - quad.a);
k -= 1;
}
}
}
fn contest (&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
use std::f64;
let mut bestd = f64::MAX;
let mut bestbiasd: f64 = bestd;
let mut bestpos = -1;
let mut bestbiaspos: i32 = bestpos;
for i in 0..self.netsize {
let bestbiasd_biased = bestbiasd + self.bias[i];
let mut dist;
let n = &self.network[i];
dist = (n.b - b).abs();
dist += (n.r - r).abs();
if dist < bestd || dist < bestbiasd_biased {
dist += (n.g - g).abs();
dist += (n.a - a).abs();
if dist < bestd {bestd=dist; bestpos=i as i32;}
let biasdist = dist - self.bias [i];
if biasdist < bestbiasd {bestbiasd=biasdist; bestbiaspos=i as i32;}
}
self.freq[i] -= BETA * self.freq[i];
self.bias[i] += BETAGAMMA * self.freq[i];
}
self.freq[bestpos as usize] += BETA;
self.bias[bestpos as usize] -= BETAGAMMA;
return bestbiaspos;
}
fn learn(&mut self, pixels: &[u8]) {
let initrad: i32 = self.netsize as i32/8;
let radiusbiasshift: i32 = 6;
let radiusbias: i32 = 1 << radiusbiasshift;
let init_bias_radius: i32 = initrad*radiusbias;
let mut bias_radius = init_bias_radius;
let alphadec = 30 + ((self.samplefac-1)/3);
let lengthcount = pixels.len() / CHANNELS;
let samplepixels = lengthcount / self.samplefac as usize;
let n_cycles = match self.netsize >> 1 { n if n <= 100 => 100, n => n};
let delta = match samplepixels / n_cycles { 0 => 1, n => n };
let mut alpha = INIT_ALPHA;
let mut rad = bias_radius >> radiusbiasshift;
if rad <= 1 {rad = 0};
let mut pos = 0;
let step = *PRIMES.iter()
.find(|&&prime| lengthcount % prime != 0)
.unwrap_or(&PRIMES[3]);
let mut i = 0;
while i < samplepixels {
let (r, g, b, a) = {
let p = &pixels[CHANNELS * pos..][..CHANNELS];
(p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64)
};
let j = self.contest (b, g, r, a);
let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64;
self.altersingle(alpha_, j, Quad { b: b, g: g, r: r, a: a });
if rad > 0 {
self.alterneigh(alpha_, rad, j, Quad { b: b, g: g, r: r, a: a })
};
pos += step;
while pos >= lengthcount { pos -= lengthcount };
i += 1;
if i%delta == 0 {
alpha -= alpha / alphadec;
bias_radius -= bias_radius / RADIUS_DEC;
rad = bias_radius >> radiusbiasshift;
if rad <= 1 {rad = 0};
}
}
}
fn build_colormap(&mut self) {
for i in 0usize..self.netsize {
self.colormap[i].b = clamp(self.network[i].b.round() as i32, 0, 255);
self.colormap[i].g = clamp(self.network[i].g.round() as i32, 0, 255);
self.colormap[i].r = clamp(self.network[i].r.round() as i32, 0, 255);
self.colormap[i].a = clamp(self.network[i].a.round() as i32, 0, 255);
}
}
fn inxbuild(&mut self) {
let mut previouscol = 0;
let mut startpos = 0;
for i in 0..self.netsize {
let mut p = self.colormap[i];
let mut q;
let mut smallpos = i;
let mut smallval = p.g as usize;
for j in (i + 1)..self.netsize {
q = self.colormap[j];
if (q.g as usize) < smallval {
smallpos = j;
smallval = q.g as usize;
}
}
q = self.colormap[smallpos];
if i != smallpos {
let j = q;
q = p;
p = j;
self.colormap[i] = p;
self.colormap[smallpos] = q;
}
if smallval != previouscol {
self.netindex[previouscol] = (startpos + i)>>1;
for j in (previouscol + 1)..smallval {
self.netindex[j] = i
}
previouscol = smallval;
startpos = i;
}
}
let max_netpos = self.netsize - 1;
self.netindex[previouscol] = (startpos + max_netpos)>>1;
for j in (previouscol + 1)..256 { self.netindex[j] = max_netpos };
}
fn inxsearch(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
let mut bestd = 1 << 30;
let mut best = 0;
let mut i = self.netindex[g as usize];
let mut j = if i > 0 { i - 1 } else { 0 };
while (i < self.netsize) || (j > 0) {
if i < self.netsize {
let p = self.colormap[i];
let mut e = p.g - g as i32;
let mut dist = e*e;
if dist >= bestd { break }
else {
e = p.b - b as i32;
dist += e*e;
if dist < bestd {
e = p.r - r as i32;
dist += e*e;
if dist < bestd {
e = p.a - a as i32;
dist += e*e;
if dist < bestd { bestd = dist; best = i;}
}
}
i += 1;
}
}
if j > 0 {
let p = self.colormap[j];
let mut e = p.g - g as i32;
let mut dist = e*e;
if dist >= bestd { break }
else {
e = p.b - b as i32;
dist += e*e;
if dist < bestd {
e = p.r - r as i32;
dist += e*e;
if dist < bestd {
e = p.a - a as i32;
dist += e*e;
if dist < bestd { bestd = dist; best = j; }
}
}
j -= 1;
}
}
}
best
}
}