1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
use std::ops::{ Index, IndexMut };
use num::{ NumCast, Zero };
use std::mem;

use buffer::Pixel;
use traits::Primitive;

/// An enumeration over supported color types and their bit depths
#[derive(Copy, PartialEq, Eq, Debug, Clone)]
pub enum ColorType {
    /// Pixel is grayscale
    Gray(u8),

    /// Pixel contains R, G and B channels
    RGB(u8),

    /// Pixel is an index into a color palette
    Palette(u8),

    /// Pixel is grayscale with an alpha channel
    GrayA(u8),

    /// Pixel is RGB with an alpha channel
    RGBA(u8)
}

/// Returns the number of bits contained in a pixel of ColorType ```c```
pub fn bits_per_pixel(c: ColorType) -> usize {
    match c {
        ColorType::Gray(n)    => n as usize,
        ColorType::RGB(n)     => 3 * n as usize,
        ColorType::Palette(n) => 3 * n as usize,
        ColorType::GrayA(n)   => 2 * n as usize,
        ColorType::RGBA(n)    => 4 * n as usize,
    }
}

/// Returns the number of color channels that make up this pixel
pub fn num_components(c: ColorType) -> usize {
    match c {
        ColorType::Gray(_)    => 1,
        ColorType::RGB(_)     => 3,
        ColorType::Palette(_) => 3,
        ColorType::GrayA(_)   => 2,
        ColorType::RGBA(_)    => 4,
    }
}

macro_rules! define_colors {
    {$(
        $ident:ident,
        $channels: expr,
        $alphas: expr,
        $interpretation: expr,
        $color_type: ident,
        #[$doc:meta];
    )*} => {

$( // START Structure definitions

#[$doc]
#[derive(PartialEq, Eq, Clone, Debug, Copy, Hash)]
#[repr(C)]
#[allow(missing_docs)]
pub struct $ident<T: Primitive> { pub data: [T; $channels] }
#[allow(non_snake_case, missing_docs)]
pub fn $ident<T: Primitive>(data: [T; $channels]) -> $ident<T> {
    $ident {
        data: data
    }
}

impl<T: Primitive + 'static> Pixel for $ident<T> {

    type Subpixel = T;

    fn channel_count() -> u8 {
        $channels
    }
    fn color_model() -> &'static str {
        $interpretation
    }
    fn color_type() -> ColorType {
        ColorType::$color_type(mem::size_of::<T>() as u8 * 8)
    }
    #[inline(always)]
    fn channels(&self) -> &[T] {
        &self.data
    }
    #[inline(always)]
    fn channels_mut(&mut self) -> &mut [T] {
        &mut self.data
    }

    #[allow(trivial_casts)]
    fn channels4(&self) -> (T, T, T, T) {
        let a;
        let mut b = T::max_value();
        let mut c = T::max_value();
        let mut d = T::max_value();
        let this = self.data;
        if $channels as u8 == 1 {
            a = this[0];
        } else if $channels as u8 == 2 {
            a = this[0];
            b = this[1];
        } else if $channels as u8 == 3 {
            a = this[0];
            b = this[1];
            c = this[2];
        } else {
            a = this[0];
            b = this[1];
            c = this[2];
            d = this[3];
        }
        (a, b, c, d)
    }

    fn from_channels(a: T, b: T, c: T, d: T,) -> $ident<T> {
        *<$ident<T> as Pixel>::from_slice(&[a, b, c, d][..$channels])
    }

    fn from_slice<'a>(slice: &'a [T]) -> &'a $ident<T> {
        assert_eq!(slice.len(), $channels);
        unsafe { mem::transmute(slice.as_ptr()) }
    }
    fn from_slice_mut<'a>(slice: &'a mut [T]) -> &'a mut $ident<T> {
        assert_eq!(slice.len(), $channels);
        unsafe { mem::transmute(slice.as_ptr()) }
    }

    fn to_rgb(&self) -> Rgb<T> {
        let mut pix = Rgb {data: [Zero::zero(), Zero::zero(), Zero::zero()]};
        pix.from_color(self);
        pix
    }

    fn to_rgba(&self) -> Rgba<T> {
        let mut pix = Rgba {data: [Zero::zero(), Zero::zero(), Zero::zero(), Zero::zero()]};
        pix.from_color(self);
        pix
    }

    fn to_luma(&self) -> Luma<T> {
        let mut pix = Luma {data: [Zero::zero()]};
        pix.from_color(self);
        pix
    }

    fn to_luma_alpha(&self) -> LumaA<T> {
        let mut pix = LumaA {data: [Zero::zero(), Zero::zero()]};
        pix.from_color(self);
        pix
    }

    fn map<F>(& self, f: F) -> $ident<T> where F: Fn(T) -> T {
        let mut this = (*self).clone();
        this.apply(f);
        this
    }

    fn apply<F>(&mut self, f: F) where F: Fn(T) -> T {
        for v in self.data.iter_mut() {
            *v = f(*v)
        }
    }

    fn map_with_alpha<F, G>(&self, f: F, g: G) -> $ident<T> where F: Fn(T) -> T, G: Fn(T) -> T {
        let mut this = (*self).clone();
        this.apply_with_alpha(f, g);
        this
    }

    #[allow(trivial_casts)]
    fn apply_with_alpha<F, G>(&mut self, f: F, g: G) where F: Fn(T) -> T, G: Fn(T) -> T {
        for v in self.data[..$channels as usize-$alphas as usize].iter_mut() {
            *v = f(*v)
        }
        if $alphas as usize != 0 {
            let v = &mut self.data[$channels as usize-$alphas as usize-1];
            *v = g(*v)
        }
    }

    fn map2<F>(&self, other: &Self, f: F) -> $ident<T> where F: Fn(T, T) -> T {
        let mut this = (*self).clone();
        this.apply2(other, f);
        this
    }

    fn apply2<F>(&mut self, other: &$ident<T>, f: F) where F: Fn(T, T) -> T {
        for (a, &b) in self.data.iter_mut().zip(other.data.iter()) {
            *a = f(*a, b)
        }

    }

    fn invert(&mut self) {
        Invert::invert(self)
    }

    fn blend(&mut self, other: &$ident<T>) {
        Blend::blend(self, other)
    }
}

impl<T: Primitive> Index<usize> for $ident<T> {
    type Output = T;
    #[inline(always)]
    fn index<'a>(&'a self, _index: usize) -> &'a T {
        &self.data[_index]
    }
}

impl<T: Primitive> IndexMut<usize> for $ident<T> {
    #[inline(always)]
    fn index_mut<'a>(&'a mut self, _index: usize) -> &'a mut T {
        &mut self.data[_index]
    }
}

)* // END Structure definitions

    }
}

define_colors! {
    Rgb, 3, 0, "RGB", RGB, #[doc = "RGB colors"];
    Luma, 1, 0, "Y", Gray, #[doc = "Grayscale colors"];
    Rgba, 4, 1, "RGBA", RGBA, #[doc = "RGB colors + alpha channel"];
    LumaA, 2, 1, "YA", GrayA, #[doc = "Grayscale colors + alpha channel"];
}


/// Provides color conversions for the different pixel types.
pub trait FromColor<Other> {
    /// Changes `self` to represent `Other` in the color space of `Self`
    fn from_color(&mut self, &Other);
}

// Self->Self: just copy
impl<A: Copy> FromColor<A> for A {
    fn from_color(&mut self, other: &A) {
        *self = *other;
    }
}

/// FromColor for Luma

impl<T: Primitive + 'static> FromColor<Rgba<T>> for Luma<T> {
    fn from_color(&mut self, other: &Rgba<T>) {
            let gray = self.channels_mut();
            let rgb = other.channels();
            let l = 0.2126f32 * rgb[0].to_f32().unwrap() +
                    0.7152f32 * rgb[1].to_f32().unwrap() +
                    0.0722f32 * rgb[2].to_f32().unwrap();
            gray[0] = NumCast::from(l).unwrap()
    }
}

impl<T: Primitive + 'static> FromColor<Rgb<T>> for Luma<T> {
    fn from_color(&mut self, other: &Rgb<T>) {
            let gray = self.channels_mut();
            let rgb = other.channels();
            let l = 0.2126f32 * rgb[0].to_f32().unwrap() +
                    0.7152f32 * rgb[1].to_f32().unwrap() +
                    0.0722f32 * rgb[2].to_f32().unwrap();
            gray[0] = NumCast::from(l).unwrap()
    }
}

impl<T: Primitive + 'static> FromColor<LumaA<T>> for Luma<T> {
    fn from_color(&mut self, other: &LumaA<T>) {
            self.channels_mut()[0] = other.channels()[0]
    }
}

/// FromColor for LumA


impl<T: Primitive + 'static> FromColor<Rgba<T>> for LumaA<T> {
    fn from_color(&mut self, other: &Rgba<T>) {
        let gray_a = self.channels_mut();
        let rgba = other.channels();
        let l = 0.2126f32 * rgba[0].to_f32().unwrap() +
                0.7152f32 * rgba[1].to_f32().unwrap() +
                0.0722f32 * rgba[2].to_f32().unwrap();
        gray_a[0] = NumCast::from(l).unwrap();
        gray_a[1] = rgba[3];
    }
}

impl<T: Primitive + 'static> FromColor<Rgb<T>> for LumaA<T> {
    fn from_color(&mut self, other: &Rgb<T>) {
        let gray_a = self.channels_mut();
        let rgb = other.channels();
        let l = 0.2126f32 * rgb[0].to_f32().unwrap() +
                0.7152f32 * rgb[1].to_f32().unwrap() +
                0.0722f32 * rgb[2].to_f32().unwrap();
        gray_a[0] = NumCast::from(l).unwrap();
        gray_a[1] = T::max_value();
    }
}

impl<T: Primitive + 'static> FromColor<Luma<T>> for LumaA<T> {
    fn from_color(&mut self, other: &Luma<T>) {
        let gray_a = self.channels_mut();
        gray_a[0] = other.channels()[0];
        gray_a[1] = T::max_value();
    }
}

/// FromColor for RGBA

impl<T: Primitive + 'static> FromColor<Rgb<T>> for Rgba<T> {
    fn from_color(&mut self, other: &Rgb<T>) {
        let rgba = self.channels_mut();
        let rgb = other.channels();
        rgba[0] = rgb[0];
        rgba[1] = rgb[1];
        rgba[2] = rgb[2];
        rgba[3] = T::max_value();

    }
}

impl<T: Primitive + 'static> FromColor<LumaA<T>> for Rgba<T> {
    fn from_color(&mut self, other: &LumaA<T>) {
        let rgba = self.channels_mut();
        let gray = other.channels();
        rgba[0] = gray[0];
        rgba[1] = gray[0];
        rgba[2] = gray[0];
        rgba[3] = gray[1];
    }
}

impl<T: Primitive + 'static> FromColor<Luma<T>> for Rgba<T> {
    fn from_color(&mut self, gray: &Luma<T>) {
        let rgba = self.channels_mut();
        let gray = gray.channels()[0];
        rgba[0] = gray;
        rgba[1] = gray;
        rgba[2] = gray;
        rgba[3] = T::max_value();
    }
}


/// FromColor for RGB

impl<T: Primitive + 'static> FromColor<Rgba<T>> for Rgb<T> {
    fn from_color(&mut self, other: &Rgba<T>) {
        let rgb = self.channels_mut();
        let rgba = other.channels();
        rgb[0] = rgba[0];
        rgb[1] = rgba[1];
        rgb[2] = rgba[2];

    }
}

impl<T: Primitive + 'static> FromColor<LumaA<T>> for Rgb<T> {
    fn from_color(&mut self, other: &LumaA<T>) {
        let rgb = self.channels_mut();
        let gray = other.channels()[0];
        rgb[0] = gray;
        rgb[1] = gray;
        rgb[2] = gray;
    }
}

impl<T: Primitive + 'static> FromColor<Luma<T>> for Rgb<T> {
    fn from_color(&mut self, gray: &Luma<T>) {
        let rgb = self.channels_mut();
        let gray = gray.channels()[0];
        rgb[0] = gray;
        rgb[1] = gray;
        rgb[2] = gray;
    }
}

/// Blends a color inter another one
pub trait Blend {
    /// Blends a color in-place.
    fn blend(&mut self, other: &Self);
}

impl<T: Primitive> Blend for LumaA<T> {
    fn blend(&mut self, other: &LumaA<T>) {
        let max_t = T::max_value();
        let max_t = max_t.to_f32().unwrap();
        let (bg_luma, bg_a) = (self.data[0], self.data[1]);
        let (fg_luma, fg_a) = (other.data[0], other.data[1]);

        let (bg_luma, bg_a) = (bg_luma.to_f32().unwrap() / max_t, bg_a.to_f32().unwrap() / max_t);
        let (fg_luma, fg_a) = (fg_luma.to_f32().unwrap() / max_t, fg_a.to_f32().unwrap() / max_t);

        let alpha_final = bg_a + fg_a - bg_a * fg_a;
        let bg_luma_a = bg_luma * bg_a;
        let fg_luma_a = fg_luma * fg_a;

        let out_luma_a = fg_luma_a + bg_luma_a * (1.0 - fg_a);
        let out_luma = out_luma_a / alpha_final;

        *self = LumaA([
            NumCast::from(max_t * out_luma).unwrap(),
            NumCast::from(max_t * alpha_final).unwrap()
        ])
    }
}

impl<T: Primitive> Blend for Luma<T> {
    fn blend(&mut self, other: &Luma<T>) {
        *self = *other
    }
}

impl<T: Primitive> Blend for Rgba<T> {
    fn blend(&mut self, other: &Rgba<T>) {
        // http://stackoverflow.com/questions/7438263/alpha-compositing-algorithm-blend-modes#answer-11163848

        // First, as we don't know what type our pixel is, we have to convert to floats between 0.0 and 1.0
        let max_t = T::max_value();
        let max_t = max_t.to_f32().unwrap();
        let (bg_r, bg_g, bg_b, bg_a) = (self.data[0], self.data[1], self.data[2], self.data[3]);
        let (fg_r, fg_g, fg_b, fg_a) = (other.data[0], other.data[1], other.data[2], other.data[3]);
        let (bg_r, bg_g, bg_b, bg_a) = (bg_r.to_f32().unwrap() / max_t, bg_g.to_f32().unwrap() / max_t, bg_b.to_f32().unwrap() / max_t, bg_a.to_f32().unwrap() / max_t);
        let (fg_r, fg_g, fg_b, fg_a) = (fg_r.to_f32().unwrap() / max_t, fg_g.to_f32().unwrap() / max_t, fg_b.to_f32().unwrap() / max_t, fg_a.to_f32().unwrap() / max_t);

        // Work out what the final alpha level will be
        let alpha_final = bg_a + fg_a - bg_a * fg_a;

        // We premultiply our channels bu their alpha, as this makes it easier to calculate
        let (bg_r_a, bg_g_a, bg_b_a) = (bg_r * bg_a, bg_g * bg_a, bg_b * bg_a);
        let (fg_r_a, fg_g_a, fg_b_a) = (fg_r * fg_a, fg_g * fg_a, fg_b * fg_a);

        // Standard formula for src-over alpha compositing
        let (out_r_a, out_g_a, out_b_a) = (fg_r_a + bg_r_a * (1.0 - fg_a), fg_g_a + bg_g_a * (1.0 - fg_a), fg_b_a + bg_b_a * (1.0 - fg_a));

        // Unmultiply the channels by our resultant alpha channel
        let (out_r, out_g, out_b) = (out_r_a / alpha_final, out_g_a / alpha_final, out_b_a / alpha_final);

        // Cast back to our initial type on return
        *self = Rgba([
            NumCast::from(max_t * out_r).unwrap(),
            NumCast::from(max_t * out_g).unwrap(),
            NumCast::from(max_t * out_b).unwrap(),
            NumCast::from(max_t * alpha_final).unwrap()
        ])
    }
}

impl<T: Primitive> Blend for Rgb<T> {
    fn blend(&mut self, other: &Rgb<T>) {
        *self = *other
    }
}

/// Invert a color
pub trait Invert {
    /// Inverts a color in-place.
    fn invert(&mut self);
}

impl<T: Primitive> Invert for LumaA<T> {
    fn invert(&mut self) {
        let l = self.data;
        let max = T::max_value();

        *self = LumaA([max - l[0], l[1]])

    }
}

impl<T: Primitive> Invert for Luma<T> {
    fn invert(&mut self) {
        let l = self.data;

        let max = T::max_value();
        let l1 = max - l[0];

        *self = Luma {data: [l1]}
    }
}

impl<T: Primitive> Invert for Rgba<T> {
    fn invert(&mut self) {
        let rgba = self.data;

        let max = T::max_value();

        *self = Rgba([max - rgba[0], max - rgba[1], max - rgba[2], rgba[3]])
    }
}

impl<T: Primitive> Invert for Rgb<T> {
    fn invert(&mut self) {
        let rgb = self.data;

        let max = T::max_value();

        let r1 = max - rgb[0];
        let g1 = max - rgb[1];
        let b1 = max - rgb[2];

        *self = Rgb([r1, g1, b1])
    }
}