1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//! ZLIB compression and decompression of streams

use std::io::prelude::*;
use std::io;

use raw;

/// A ZLIB encoder, or compressor.
///
/// This structure implements a `Write` interface and takes a stream of
/// uncompressed data, writing the compressed data to the wrapped writer.
pub struct EncoderWriter<W: Write> {
    inner: raw::EncoderWriter<W>,
}

/// A ZLIB encoder, or compressor.
///
/// This structure implements a `Read` interface and will read uncompressed
/// data from an underlying stream and emit a stream of compressed data.
pub struct EncoderReader<R: Read> {
    inner: raw::EncoderReader<R>,
}

/// A ZLIB decoder, or decompressor.
///
/// This structure implements a `Read` interface and takes a stream of
/// compressed data as input, providing the decompressed data when read from.
pub struct DecoderReader<R: Read> {
    inner: raw::DecoderReader<R>,
}

/// A ZLIB decoder, or decompressor.
///
/// This structure implements a `Write` and will emit a stream of decompressed
/// data when fed a stream of compressed data.
pub struct DecoderWriter<W: Write> {
    inner: raw::DecoderWriter<W>,
}

impl<W: Write> EncoderWriter<W> {
    /// Creates a new encoder which will write compressed data to the stream
    /// given at the given compression level.
    ///
    /// When this encoder is dropped or unwrapped the final pieces of data will
    /// be flushed.
    pub fn new(w: W, level: ::Compression) -> EncoderWriter<W> {
        EncoderWriter {
            inner: raw::EncoderWriter::new(w,
                                           level,
                                           false,
                                           Vec::with_capacity(32 * 1024)),
        }
    }

    /// Resets the state of this encoder entirely, swapping out the output
    /// stream for another.
    ///
    /// This function will finish encoding the current stream into the current
    /// output stream before swapping out the two output streams. If the stream
    /// cannot be finished an error is returned.
    ///
    /// After the current stream has been finished, this will reset the internal
    /// state of this encoder and replace the output stream with the one
    /// provided, returning the previous output stream. Future data written to
    /// this encoder will be the compressed into the stream `w` provided.
    pub fn reset(&mut self, w: W) -> io::Result<W> {
        try!(self.inner.finish());
        Ok(self.inner.reset(w))
    }

    /// Consumes this encoder, flushing the output stream.
    ///
    /// This will flush the underlying data stream and then return the contained
    /// writer if the flush succeeded.
    pub fn finish(mut self) -> io::Result<W> {
        try!(self.inner.finish());
        Ok(self.inner.into_inner())
    }
}

impl<W: Write> Write for EncoderWriter<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

impl<R: Read> EncoderReader<R> {
    /// Creates a new encoder which will read uncompressed data from the given
    /// stream and emit the compressed stream.
    pub fn new(r: R, level: ::Compression) -> EncoderReader<R> {
        EncoderReader {
            inner: raw::EncoderReader::new(r, level, false, vec![0; 32 * 1024]),
        }
    }

    /// Resets the state of this encoder entirely, swapping out the input
    /// stream for another.
    ///
    /// This function will reset the internal state of this encoder and replace
    /// the input stream with the one provided, returning the previous input
    /// stream. Future data read from this encoder will be the compressed
    /// version of `r`'s data.
    pub fn reset(&mut self, r: R) -> R {
        self.inner.reset(r)
    }

    /// Consumes this encoder, returning the underlying reader.
    pub fn into_inner(self) -> R {
        self.inner.into_inner()
    }
}

impl<R: Read> Read for EncoderReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.inner.read(buf)
    }
}

impl<R: Read> DecoderReader<R> {
    /// Creates a new decoder which will decompress data read from the given
    /// stream.
    pub fn new(r: R) -> DecoderReader<R> {
        DecoderReader::new_with_buf(r, vec![0; 32 * 1024])
    }

    /// Same as `new`, but the intermediate buffer for data is specified.
    ///
    /// Note that the specified buffer will only be used up to its current
    /// length. The buffer's capacity will also not grow over time.
    pub fn new_with_buf(r: R, buf: Vec<u8>) -> DecoderReader<R> {
        DecoderReader { inner: raw::DecoderReader::new(r, false, buf) }
    }

    /// Resets the state of this decoder entirely, swapping out the input
    /// stream for another.
    ///
    /// This will reset the internal state of this decoder and replace the
    /// input stream with the one provided, returning the previous input
    /// stream. Future data read from this decoder will be the decompressed
    /// version of `r`'s data.
    pub fn reset(&mut self, r: R) -> R {
        self.inner.reset(r, false)
    }

    /// Consumes this decoder, returning the underlying reader.
    pub fn into_inner(self) -> R {
        self.inner.into_inner()
    }

    /// Returns the number of bytes that the decompressor has consumed.
    ///
    /// Note that this will likely be smaller than what the decompressor
    /// actually read from the underlying stream due to buffering.
    pub fn total_in(&self) -> u64 {
        self.inner.total_in()
    }

    /// Returns the number of bytes that the decompressor has produced.
    pub fn total_out(&self) -> u64 {
        self.inner.total_out()
    }
}

impl<R: Read> Read for DecoderReader<R> {
    fn read(&mut self, into: &mut [u8]) -> io::Result<usize> {
        self.inner.read(into)
    }
}

impl<W: Write> DecoderWriter<W> {
    /// Creates a new decoder which will write uncompressed data to the stream.
    ///
    /// When this decoder is dropped or unwrapped the final pieces of data will
    /// be flushed.
    pub fn new(w: W) -> DecoderWriter<W> {
        DecoderWriter {
            inner: raw::DecoderWriter::new(w,
                                           false,
                                           Vec::with_capacity(32 * 1024)),
        }
    }

    /// Resets the state of this decoder entirely, swapping out the output
    /// stream for another.
    ///
    /// This will reset the internal state of this decoder and replace the
    /// output stream with the one provided, returning the previous output
    /// stream. Future data written to this decoder will be decompressed into
    /// the output stream `w`.
    pub fn reset(&mut self, w: W) -> io::Result<W> {
        try!(self.inner.finish());
        Ok(self.inner.reset(w, false))
    }

    /// Consumes this encoder, flushing the output stream.
    ///
    /// This will flush the underlying data stream and then return the contained
    /// writer if the flush succeeded.
    pub fn finish(mut self) -> io::Result<W> {
        try!(self.inner.finish());
        Ok(self.inner.into_inner())
    }

    /// Returns the number of bytes that the decompressor has consumed for
    /// decompression.
    ///
    /// Note that this will likely be smaller than the number of bytes
    /// successfully written to this stream due to internal buffering.
    pub fn total_in(&self) -> u64 {
        self.inner.total_in()
    }

    /// Returns the number of bytes that the decompressor has written to its
    /// output stream.
    pub fn total_out(&self) -> u64 {
        self.inner.total_out()
    }
}

impl<W: Write> Write for DecoderWriter<W> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.inner.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.inner.flush()
    }
}

#[cfg(test)]
mod tests {
    use std::io::prelude::*;

    use rand::{thread_rng, Rng};

    use zlib::{EncoderWriter, EncoderReader, DecoderReader, DecoderWriter};
    use Compression::Default;

    #[test]
    fn roundtrip() {
        let mut real = Vec::new();
        let mut w = EncoderWriter::new(Vec::new(), Default);
        let v = thread_rng().gen_iter::<u8>().take(1024).collect::<Vec<_>>();
        for _ in 0..200 {
            let to_write = &v[..thread_rng().gen_range(0, v.len())];
            real.extend(to_write.iter().map(|x| *x));
            w.write_all(to_write).unwrap();
        }
        let result = w.finish().unwrap();
        let mut r = DecoderReader::new(&result[..]);
        let mut ret = Vec::new();
        r.read_to_end(&mut ret).unwrap();
        assert!(ret == real);
    }

    #[test]
    fn total_in() {
        let mut real = Vec::new();
        let mut w = EncoderWriter::new(Vec::new(), Default);
        let v = thread_rng().gen_iter::<u8>().take(1024).collect::<Vec<_>>();
        for _ in 0..200 {
            let to_write = &v[..thread_rng().gen_range(0, v.len())];
            real.extend(to_write.iter().map(|x| *x));
            w.write_all(to_write).unwrap();
        }
        let mut result = w.finish().unwrap();

        let result_len = result.len();

        for _ in 0..200 {
            result.extend(v.iter().map(|x| *x));
        }

        let mut r = DecoderReader::new(&result[..]);
        let mut ret = Vec::new();
        r.read_to_end(&mut ret).unwrap();
        assert!(ret == real);
        assert_eq!(r.total_in(), result_len as u64);
    }

    #[test]
    fn roundtrip2() {
        let v = thread_rng()
                    .gen_iter::<u8>()
                    .take(1024 * 1024)
                    .collect::<Vec<_>>();
        let mut r = DecoderReader::new(EncoderReader::new(&v[..], Default));
        let mut ret = Vec::new();
        r.read_to_end(&mut ret).unwrap();
        assert_eq!(ret, v);
    }

    #[test]
    fn roundtrip3() {
        let v = thread_rng()
                    .gen_iter::<u8>()
                    .take(1024 * 1024)
                    .collect::<Vec<_>>();
        let mut w = EncoderWriter::new(DecoderWriter::new(Vec::new()), Default);
        w.write_all(&v).unwrap();
        let w = w.finish().unwrap().finish().unwrap();
        assert!(w == v);
    }

    #[test]
    fn reset_decoder() {
        let v = thread_rng()
                    .gen_iter::<u8>()
                    .take(1024 * 1024)
                    .collect::<Vec<_>>();
        let mut w = EncoderWriter::new(Vec::new(), Default);
        w.write_all(&v).unwrap();
        let data = w.finish().unwrap();

        {
            let (mut a, mut b, mut c) = (Vec::new(), Vec::new(), Vec::new());
            let mut r = DecoderReader::new(&data[..]);
            r.read_to_end(&mut a).unwrap();
            r.reset(&data);
            r.read_to_end(&mut b).unwrap();

            let mut r = DecoderReader::new(&data[..]);
            r.read_to_end(&mut c).unwrap();
            assert!(a == b && b == c && c == v);
        }

        {
            let mut w = DecoderWriter::new(Vec::new());
            w.write_all(&data).unwrap();
            let a = w.reset(Vec::new()).unwrap();
            w.write_all(&data).unwrap();
            let b = w.finish().unwrap();

            let mut w = DecoderWriter::new(Vec::new());
            w.write_all(&data).unwrap();
            let c = w.finish().unwrap();
            assert!(a == b && b == c && c == v);
        }
    }
}