1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use approxeq::ApproxEq;
use trig::Trig;
use point::{Point2D, Point4D};
use num::{One, Zero};
use std::ops::{Add, Mul, Sub, Div, Neg};

#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "plugins", derive(HeapSizeOf, Deserialize, Serialize))]
pub struct Matrix4D<T> {
    pub m11: T, pub m12: T, pub m13: T, pub m14: T,
    pub m21: T, pub m22: T, pub m23: T, pub m24: T,
    pub m31: T, pub m32: T, pub m33: T, pub m34: T,
    pub m41: T, pub m42: T, pub m43: T, pub m44: T,
}

impl <T:Add<T, Output=T> +
       ApproxEq<T> +
       Copy +
       Clone +
       Div<T, Output=T> +
       Mul<T, Output=T> +
       Neg<Output=T> +
       One +
       PartialOrd +
       Sub<T, Output=T> +
       Trig +
       Zero> Matrix4D<T> {

    #[inline]
    pub fn new(
            m11: T, m12: T, m13: T, m14: T,
            m21: T, m22: T, m23: T, m24: T,
            m31: T, m32: T, m33: T, m34: T,
            m41: T, m42: T, m43: T, m44: T)
         -> Matrix4D<T> {
        Matrix4D {
            m11: m11, m12: m12, m13: m13, m14: m14,
            m21: m21, m22: m22, m23: m23, m24: m24,
            m31: m31, m32: m32, m33: m33, m34: m34,
            m41: m41, m42: m42, m43: m43, m44: m44
        }
    }

    #[inline]
    pub fn new_2d(m11: T, m12: T, m21: T, m22: T, m41: T, m42: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        Matrix4D {
            m11: m11, m12: m12, m13:  _0, m14: _0,
            m21: m21, m22: m22, m23:  _0, m24: _0,
            m31:  _0, m32:  _0, m33:  _1, m34: _0,
            m41: m41, m42: m42, m43:  _0, m44: _1
       }
    }

    pub fn ortho(left: T, right: T,
                 bottom: T, top: T,
                 near: T, far: T) -> Matrix4D<T> {
        let tx = -((right + left) / (right - left));
        let ty = -((top + bottom) / (top - bottom));
        let tz = -((far + near) / (far - near));

        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        let _2 = _1 + _1;
        Matrix4D::new(_2 / (right - left),
                      _0,
                      _0,
                      _0,

                      _0,
                      _2 / (top - bottom),
                      _0,
                      _0,

                      _0,
                      _0,
                      -_2 / (far - near),
                      _0,

                       tx,
                       ty,
                       tz,
                      _1)
    }

    #[inline]
    pub fn identity() -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        Matrix4D::new(_1, _0, _0, _0,
                      _0, _1, _0, _0,
                      _0, _0, _1, _0,
                      _0, _0, _0, _1)
    }


    // See https://drafts.csswg.org/css-transforms/#2d-matrix
    #[inline]
    pub fn is_2d(&self) -> bool {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        self.m31 == _0 && self.m32 == _0 &&
        self.m13 == _0 && self.m23 == _0 &&
        self.m43 == _0 && self.m14 == _0 &&
        self.m24 == _0 && self.m34 == _0 &&
        self.m33 == _1 && self.m44 == _1
    }


    pub fn approx_eq(&self, other: &Matrix4D<T>) -> bool {
        self.m11.approx_eq(&other.m11) && self.m12.approx_eq(&other.m12) &&
        self.m13.approx_eq(&other.m13) && self.m14.approx_eq(&other.m14) &&
        self.m21.approx_eq(&other.m21) && self.m22.approx_eq(&other.m22) &&
        self.m23.approx_eq(&other.m23) && self.m24.approx_eq(&other.m24) &&
        self.m31.approx_eq(&other.m31) && self.m32.approx_eq(&other.m32) &&
        self.m33.approx_eq(&other.m33) && self.m34.approx_eq(&other.m34) &&
        self.m41.approx_eq(&other.m41) && self.m42.approx_eq(&other.m42) &&
        self.m43.approx_eq(&other.m43) && self.m44.approx_eq(&other.m44)
    }

    pub fn mul(&self, m: &Matrix4D<T>) -> Matrix4D<T> {
        Matrix4D::new(m.m11*self.m11 + m.m12*self.m21 + m.m13*self.m31 + m.m14*self.m41,
                     m.m11*self.m12 + m.m12*self.m22 + m.m13*self.m32 + m.m14*self.m42,
                     m.m11*self.m13 + m.m12*self.m23 + m.m13*self.m33 + m.m14*self.m43,
                     m.m11*self.m14 + m.m12*self.m24 + m.m13*self.m34 + m.m14*self.m44,
                     m.m21*self.m11 + m.m22*self.m21 + m.m23*self.m31 + m.m24*self.m41,
                     m.m21*self.m12 + m.m22*self.m22 + m.m23*self.m32 + m.m24*self.m42,
                     m.m21*self.m13 + m.m22*self.m23 + m.m23*self.m33 + m.m24*self.m43,
                     m.m21*self.m14 + m.m22*self.m24 + m.m23*self.m34 + m.m24*self.m44,
                     m.m31*self.m11 + m.m32*self.m21 + m.m33*self.m31 + m.m34*self.m41,
                     m.m31*self.m12 + m.m32*self.m22 + m.m33*self.m32 + m.m34*self.m42,
                     m.m31*self.m13 + m.m32*self.m23 + m.m33*self.m33 + m.m34*self.m43,
                     m.m31*self.m14 + m.m32*self.m24 + m.m33*self.m34 + m.m34*self.m44,
                     m.m41*self.m11 + m.m42*self.m21 + m.m43*self.m31 + m.m44*self.m41,
                     m.m41*self.m12 + m.m42*self.m22 + m.m43*self.m32 + m.m44*self.m42,
                     m.m41*self.m13 + m.m42*self.m23 + m.m43*self.m33 + m.m44*self.m43,
                     m.m41*self.m14 + m.m42*self.m24 + m.m43*self.m34 + m.m44*self.m44)
    }

    pub fn invert(&self) -> Matrix4D<T> {
        let det = self.determinant();

        if det == Zero::zero() {
            return Matrix4D::identity();
        }

        // todo(gw): this could be made faster by special casing
        // for simpler matrix types.
        let m = Matrix4D::new(
            self.m23*self.m34*self.m42 - self.m24*self.m33*self.m42 +
            self.m24*self.m32*self.m43 - self.m22*self.m34*self.m43 -
            self.m23*self.m32*self.m44 + self.m22*self.m33*self.m44,

            self.m14*self.m33*self.m42 - self.m13*self.m34*self.m42 -
            self.m14*self.m32*self.m43 + self.m12*self.m34*self.m43 +
            self.m13*self.m32*self.m44 - self.m12*self.m33*self.m44,

            self.m13*self.m24*self.m42 - self.m14*self.m23*self.m42 +
            self.m14*self.m22*self.m43 - self.m12*self.m24*self.m43 -
            self.m13*self.m22*self.m44 + self.m12*self.m23*self.m44,

            self.m14*self.m23*self.m32 - self.m13*self.m24*self.m32 -
            self.m14*self.m22*self.m33 + self.m12*self.m24*self.m33 +
            self.m13*self.m22*self.m34 - self.m12*self.m23*self.m34,

            self.m24*self.m33*self.m41 - self.m23*self.m34*self.m41 -
            self.m24*self.m31*self.m43 + self.m21*self.m34*self.m43 +
            self.m23*self.m31*self.m44 - self.m21*self.m33*self.m44,

            self.m13*self.m34*self.m41 - self.m14*self.m33*self.m41 +
            self.m14*self.m31*self.m43 - self.m11*self.m34*self.m43 -
            self.m13*self.m31*self.m44 + self.m11*self.m33*self.m44,

            self.m14*self.m23*self.m41 - self.m13*self.m24*self.m41 -
            self.m14*self.m21*self.m43 + self.m11*self.m24*self.m43 +
            self.m13*self.m21*self.m44 - self.m11*self.m23*self.m44,

            self.m13*self.m24*self.m31 - self.m14*self.m23*self.m31 +
            self.m14*self.m21*self.m33 - self.m11*self.m24*self.m33 -
            self.m13*self.m21*self.m34 + self.m11*self.m23*self.m34,

            self.m22*self.m34*self.m41 - self.m24*self.m32*self.m41 +
            self.m24*self.m31*self.m42 - self.m21*self.m34*self.m42 -
            self.m22*self.m31*self.m44 + self.m21*self.m32*self.m44,

            self.m14*self.m32*self.m41 - self.m12*self.m34*self.m41 -
            self.m14*self.m31*self.m42 + self.m11*self.m34*self.m42 +
            self.m12*self.m31*self.m44 - self.m11*self.m32*self.m44,

            self.m12*self.m24*self.m41 - self.m14*self.m22*self.m41 +
            self.m14*self.m21*self.m42 - self.m11*self.m24*self.m42 -
            self.m12*self.m21*self.m44 + self.m11*self.m22*self.m44,

            self.m14*self.m22*self.m31 - self.m12*self.m24*self.m31 -
            self.m14*self.m21*self.m32 + self.m11*self.m24*self.m32 +
            self.m12*self.m21*self.m34 - self.m11*self.m22*self.m34,

            self.m23*self.m32*self.m41 - self.m22*self.m33*self.m41 -
            self.m23*self.m31*self.m42 + self.m21*self.m33*self.m42 +
            self.m22*self.m31*self.m43 - self.m21*self.m32*self.m43,

            self.m12*self.m33*self.m41 - self.m13*self.m32*self.m41 +
            self.m13*self.m31*self.m42 - self.m11*self.m33*self.m42 -
            self.m12*self.m31*self.m43 + self.m11*self.m32*self.m43,

            self.m13*self.m22*self.m41 - self.m12*self.m23*self.m41 -
            self.m13*self.m21*self.m42 + self.m11*self.m23*self.m42 +
            self.m12*self.m21*self.m43 - self.m11*self.m22*self.m43,

            self.m12*self.m23*self.m31 - self.m13*self.m22*self.m31 +
            self.m13*self.m21*self.m32 - self.m11*self.m23*self.m32 -
            self.m12*self.m21*self.m33 + self.m11*self.m22*self.m33
        );

        let _1: T = One::one();
        m.mul_s(_1 / det)
    }

    pub fn determinant(&self) -> T {
        self.m14 * self.m23 * self.m32 * self.m41 -
        self.m13 * self.m24 * self.m32 * self.m41 -
        self.m14 * self.m22 * self.m33 * self.m41 +
        self.m12 * self.m24 * self.m33 * self.m41 +
        self.m13 * self.m22 * self.m34 * self.m41 -
        self.m12 * self.m23 * self.m34 * self.m41 -
        self.m14 * self.m23 * self.m31 * self.m42 +
        self.m13 * self.m24 * self.m31 * self.m42 +
        self.m14 * self.m21 * self.m33 * self.m42 -
        self.m11 * self.m24 * self.m33 * self.m42 -
        self.m13 * self.m21 * self.m34 * self.m42 +
        self.m11 * self.m23 * self.m34 * self.m42 +
        self.m14 * self.m22 * self.m31 * self.m43 -
        self.m12 * self.m24 * self.m31 * self.m43 -
        self.m14 * self.m21 * self.m32 * self.m43 +
        self.m11 * self.m24 * self.m32 * self.m43 +
        self.m12 * self.m21 * self.m34 * self.m43 -
        self.m11 * self.m22 * self.m34 * self.m43 -
        self.m13 * self.m22 * self.m31 * self.m44 +
        self.m12 * self.m23 * self.m31 * self.m44 +
        self.m13 * self.m21 * self.m32 * self.m44 -
        self.m11 * self.m23 * self.m32 * self.m44 -
        self.m12 * self.m21 * self.m33 * self.m44 +
        self.m11 * self.m22 * self.m33 * self.m44
    }

    pub fn mul_s(&self, x: T) -> Matrix4D<T> {
        Matrix4D::new(self.m11 * x, self.m12 * x, self.m13 * x, self.m14 * x,
                     self.m21 * x, self.m22 * x, self.m23 * x, self.m24 * x,
                     self.m31 * x, self.m32 * x, self.m33 * x, self.m34 * x,
                     self.m41 * x, self.m42 * x, self.m43 * x, self.m44 * x)
    }

    pub fn scale(&self, x: T, y: T, z: T) -> Matrix4D<T> {
        Matrix4D::new(self.m11 * x, self.m12,     self.m13,     self.m14,
                     self.m21    , self.m22 * y, self.m23,     self.m24,
                     self.m31    , self.m32,     self.m33 * z, self.m34,
                     self.m41    , self.m42,     self.m43,     self.m44)
    }

    /// Returns the given point transformed by this matrix.
    #[inline]
    pub fn transform_point(&self, p: &Point2D<T>) -> Point2D<T> {
        Point2D::new(p.x * self.m11 + p.y * self.m21 + self.m41,
                     p.x * self.m12 + p.y * self.m22 + self.m42)
    }

    #[inline]
    pub fn transform_point4d(&self, p: &Point4D<T>) -> Point4D<T> {
        let x = p.x * self.m11 + p.y * self.m21 + p.z * self.m31 + self.m41;
        let y = p.x * self.m12 + p.y * self.m22 + p.z * self.m32 + self.m42;
        let z = p.x * self.m13 + p.y * self.m23 + p.z * self.m33 + self.m43;
        let w = p.x * self.m14 + p.y * self.m24 + p.z * self.m34 + self.m44;
        Point4D::new(x, y, z, w)
    }

    pub fn to_array(&self) -> [T; 16] {
        [
            self.m11, self.m12, self.m13, self.m14,
            self.m21, self.m22, self.m23, self.m24,
            self.m31, self.m32, self.m33, self.m34,
            self.m41, self.m42, self.m43, self.m44
        ]
    }

    pub fn translate(&self, x: T, y: T, z: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        let matrix = Matrix4D::new(_1, _0, _0, _0,
                                   _0, _1, _0, _0,
                                   _0, _0, _1, _0,
                                    x,  y,  z, _1);
        self.mul(&matrix)
    }

    /// Create a 3d translation matrix
    pub fn create_translation(x: T, y: T, z: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        Matrix4D::new(_1, _0, _0, _0,
                      _0, _1, _0, _0,
                      _0, _0, _1, _0,
                       x,  y,  z, _1)
    }

    /// Create a 3d scale matrix
    pub fn create_scale(x: T, y: T, z: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        Matrix4D::new( x, _0, _0, _0,
                      _0,  y, _0, _0,
                      _0, _0,  z, _0,
                      _0, _0, _0, _1)
    }

    /// Create a 3d rotation matrix from an angle / axis.
    /// The supplied axis must be normalized.
    pub fn create_rotation(x: T, y: T, z: T, theta: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        let _2 = _1 + _1;

        let xx = x * x;
        let yy = y * y;
        let zz = z * z;

        let half_theta = theta / _2;
        let sc = half_theta.sin() * half_theta.cos();
        let sq = half_theta.sin() * half_theta.sin();

        Matrix4D::new(
            _1 - _2 * (yy + zz) * sq,
            _2 * (x * y * sq - z * sc),
            _2 * (x * z * sq + y * sc),
            _0,

            _2 * (x * y * sq + z * sc),
            _1 - _2 * (xx + zz) * sq,
            _2 * (y * z * sq - x * sc),
            _0,

            _2 * (x * z * sq - y * sc),
            _2 * (y * z * sq + x * sc),
            _1 - _2 * (xx + yy) * sq,
            _0,

            _0,
            _0,
            _0,
            _1
        )
    }

    /// Create a 2d skew matrix.
    /// https://drafts.csswg.org/css-transforms/#funcdef-skew
    pub fn create_skew(alpha: T, beta: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        let (sx, sy) = (beta.tan(), alpha.tan());
        Matrix4D::new(_1, sx, _0, _0,
                      sy, _1, _0, _0,
                      _0, _0, _1, _0,
                      _0, _0, _0, _1)
    }

    /// Create a simple perspective projection matrix
    pub fn create_perspective(d: T) -> Matrix4D<T> {
        let (_0, _1): (T, T) = (Zero::zero(), One::one());
        Matrix4D::new(_1, _0, _0, _0,
                      _0, _1, _0, _0,
                      _0, _0, _1, -_1 / d,
                      _0, _0, _0, _1)
    }
}