1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A (mostly) lock-free concurrent work-stealing deque
//!
//! This module contains an implementation of the Chase-Lev work stealing deque
//! described in "Dynamic Circular Work-Stealing Deque". The implementation is
//! heavily based on the implementation using C11 atomics in "Correct and
//! Efficient Work Stealing for Weak Memory Models".
//!
//! The only potentially lock-synchronized portion of this deque is the
//! occasional call to the memory allocator when growing the deque. Otherwise
//! all operations are lock-free.
//!
//! # Example
//!
//!     use deque;
//!
//!     let (worker, stealer) = deque::new();
//!
//!     // Only the worker may push/pop
//!     worker.push(1);
//!     worker.pop();
//!
//!     // Stealers take data from the other end of the deque
//!     worker.push(1);
//!     stealer.steal();
//!
//!     // Stealers can be cloned to have many stealers stealing in parallel
//!     worker.push(1);
//!     let stealer2 = stealer.clone();
//!     stealer2.steal();

pub use self::Stolen::*;

use std::sync::Arc;
use std::mem::forget;
use std::ptr;
use std::marker::PhantomData;
use std::cell::Cell;

use std::sync::atomic::{AtomicIsize, AtomicPtr, fence};
use std::sync::atomic::Ordering::{SeqCst, Acquire, Release, Relaxed};

// Initial size for a buffer.
static MIN_SIZE: usize = 32;

struct Deque<T: Send> {
    bottom: AtomicIsize,
    top: AtomicIsize,
    array: AtomicPtr<Buffer<T>>,
}

/// Worker half of the work-stealing deque. This worker has exclusive access to
/// one side of the deque, and uses `push` and `pop` method to manipulate it.
///
/// There may only be one worker per deque.
pub struct Worker<T: Send> {
    deque: Arc<Deque<T>>,

    // Marker so that the Worker is Send but not Sync. The worker can only be
    // accessed from a single thread at once. Ideally we would use a negative
    // impl here but these are not stable yet.
    marker: PhantomData<Cell<()>>,
}

/// The stealing half of the work-stealing deque. Stealers have access to the
/// opposite end of the deque from the worker, and they only have access to the
/// `steal` method.
pub struct Stealer<T: Send> {
    deque: Arc<Deque<T>>,
}

impl<T: Send> Clone for Stealer<T> {
    fn clone(&self) -> Self {
        Stealer {
            deque: self.deque.clone()
        }
    }
}

/// When stealing some data, this is an enumeration of the possible outcomes.
#[derive(PartialEq, Debug)]
pub enum Stolen<T> {
    /// The deque was empty at the time of stealing
    Empty,
    /// The stealer lost the race for stealing data, and a retry may return more
    /// data.
    Abort,
    /// The stealer has successfully stolen some data.
    Data(T),
}

/// An internal buffer used by the chase-lev deque. This structure is actually
/// implemented as a circular buffer, and is used as the intermediate storage of
/// the data in the deque.
///
/// This type is implemented with *T instead of Vec<T> for two reasons:
///
///   1. There is nothing safe about using this buffer. This easily allows the
///      same value to be read twice in to rust, and there is nothing to
///      prevent this. The usage by the deque must ensure that one of the
///      values is forgotten. Furthermore, we only ever want to manually run
///      destructors for values in this buffer (on drop) because the bounds
///      are defined by the deque it's owned by.
///
///   2. We can certainly avoid bounds checks using *T instead of Vec<T>, although
///      LLVM is probably pretty good at doing this already.
///
/// Note that we keep old buffers around after growing because stealers may still
/// be concurrently accessing them. The buffers are kept in a linked list, with
/// each buffer pointing to the previous, smaller buffer. This doesn't leak any
/// memory because all buffers in the list are freed when the deque is dropped.
struct Buffer<T: Send> {
    storage: *mut T,
    size: usize,
    prev: Option<Box<Buffer<T>>>,
}

/// Allocates a new work-stealing deque.
pub fn new<T: Send>() -> (Worker<T>, Stealer<T>) {
    let a = Arc::new(Deque::new());
    let b = a.clone();
    (Worker { deque: a, marker: PhantomData }, Stealer { deque: b })
}

impl<T: Send> Worker<T> {
    /// Pushes data onto the front of this work queue.
    pub fn push(&self, t: T) {
        unsafe { self.deque.push(t) }
    }
    /// Pops data off the front of the work queue, returning `None` on an empty
    /// queue.
    pub fn pop(&self) -> Option<T> {
        unsafe { self.deque.pop() }
    }
}

impl<T: Send> Stealer<T> {
    /// Steals work off the end of the queue (opposite of the worker's end)
    pub fn steal(&self) -> Stolen<T> {
        unsafe { self.deque.steal() }
    }
}

impl<T: Send> Deque<T> {
    fn new() -> Deque<T> {
        let buf = Box::new(unsafe { Buffer::new(MIN_SIZE) });
        Deque {
            bottom: AtomicIsize::new(0),
            top: AtomicIsize::new(0),
            array: AtomicPtr::new(Box::into_raw(buf)),
        }
    }

    unsafe fn push(&self, data: T) {
        let b = self.bottom.load(Relaxed);
        let t = self.top.load(Acquire);
        let mut a = self.array.load(Relaxed);

        // Grow the buffer if it is full.
        let size = b.wrapping_sub(t);
        if size == (*a).size() {
            a = Box::into_raw(Box::from_raw(a).grow(b, t));
            self.array.store(a, Release);
        }

        (*a).put(b, data);
        fence(Release);
        self.bottom.store(b.wrapping_add(1), Relaxed);
    }

    unsafe fn pop(&self) -> Option<T> {
        let b = self.bottom.load(Relaxed);

        // Early exit if the deque is empty. This avoids the need for a SeqCst
        // fence in this case.
        let t = self.top.load(Relaxed);
        if b.wrapping_sub(t) <= 0 {
            return None;
        }

        // Make sure bottom is stored before top is read.
        let b = b.wrapping_sub(1);
        self.bottom.store(b, Relaxed);
        fence(SeqCst);
        let t = self.top.load(Relaxed);

        // If the deque is empty, restore bottom and exit.
        let size = b.wrapping_sub(t);
        if size < 0 {
            self.bottom.store(b.wrapping_add(1), Relaxed);
            return None;
        }

        // Fetch the element from the queue.
        let a = self.array.load(Relaxed);
        let data = (*a).get(b);

        // If this was the last element in the queue, check for races.
        if size != 0 {
            return Some(data);
        }
        if self.top.compare_and_swap(t, t.wrapping_add(1), SeqCst) == t {
            self.bottom.store(t.wrapping_add(1), Relaxed);
            return Some(data);
        } else {
            self.bottom.store(t.wrapping_add(1), Relaxed);
            forget(data); // Someone else stole this value
            return None;
        }
    }

    unsafe fn steal(&self) -> Stolen<T> {
        // Make sure top is read before bottom.
        let t = self.top.load(Acquire);
        fence(SeqCst);
        let b = self.bottom.load(Acquire);

        // Exit if the queue is empty.
        let size = b.wrapping_sub(t);
        if size <= 0 {
            return Empty;
        }

        // Fetch the element from the queue.
        let a = self.array.load(Acquire);
        let data = (*a).get(t);

        // Attempt to increment top.
        if self.top.compare_and_swap(t, t.wrapping_add(1), SeqCst) == t {
            Data(data)
        } else {
            forget(data); // Someone else stole this value
            Abort
        }
    }
}

impl<T: Send> Drop for Deque<T> {
    fn drop(&mut self) {
        let t = self.top.load(Relaxed);
        let b = self.bottom.load(Relaxed);
        let a = self.array.load(Relaxed);

        // Free whatever is leftover in the deque, and then free the buffer.
        // This will also free all linked buffers.
        let mut i = t;
        while i != b {
            unsafe { (*a).get(i) };
            i = i.wrapping_add(1);
        }
        unsafe { Box::from_raw(a) };
    }
}

#[inline]
unsafe fn take_ptr_from_vec<T>(mut buf: Vec<T>) -> *mut T {
    let ptr = buf.as_mut_ptr();
    forget(buf);
    ptr
}

#[inline]
unsafe fn allocate<T>(number: usize) -> *mut T {
    let v = Vec::with_capacity(number);
    take_ptr_from_vec(v)
}

#[inline]
unsafe fn deallocate<T>(ptr: *mut T, number: usize) {
    Vec::from_raw_parts(ptr, 0, number);
}

impl<T: Send> Buffer<T> {
    unsafe fn new(size: usize) -> Buffer<T> {
        Buffer {
            storage: allocate(size),
            size: size,
            prev: None,
        }
    }

    fn size(&self) -> isize { self.size as isize }

    fn mask(&self) -> isize { self.size as isize - 1 }

    unsafe fn elem(&self, i: isize) -> *mut T {
        self.storage.offset(i & self.mask())
    }

    // This does not protect against loading duplicate values of the same cell,
    // nor does this clear out the contents contained within. Hence, this is a
    // very unsafe method which the caller needs to treat specially in case a
    // race is lost.
    unsafe fn get(&self, i: isize) -> T {
        ptr::read(self.elem(i))
    }

    // Unsafe because this unsafely overwrites possibly uninitialized or
    // initialized data.
    unsafe fn put(&self, i: isize, t: T) {
        ptr::write(self.elem(i), t);
    }

    // Again, unsafe because this has incredibly dubious ownership violations.
    // It is assumed that this buffer is immediately dropped.
    unsafe fn grow(self: Box<Buffer<T>>, b: isize, t: isize) -> Box<Buffer<T>> {
        let mut buf = Box::new(Buffer::new(self.size * 2));
        let mut i = t;
        while i != b {
            buf.put(i, self.get(i));
            i = i.wrapping_add(1);
        }
        buf.prev = Some(self);
        return buf;
    }
}

impl<T: Send> Drop for Buffer<T> {
    fn drop(&mut self) {
        // It is assumed that all buffers are empty on drop.
        unsafe { deallocate(self.storage, self.size) }
    }
}