1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A typesafe bitmask flag generator.

/// The `bitflags!` macro generates a `struct` that holds a set of C-style
/// bitmask flags. It is useful for creating typesafe wrappers for C APIs.
///
/// The flags should only be defined for integer types, otherwise unexpected
/// type errors may occur at compile time.
///
/// # Example
///
/// ```{.rust}
/// #[macro_use]
/// extern crate bitflags;
///
/// bitflags! {
///     flags Flags: u32 {
///         const FLAG_A       = 0b00000001,
///         const FLAG_B       = 0b00000010,
///         const FLAG_C       = 0b00000100,
///         const FLAG_ABC     = FLAG_A.bits
///                            | FLAG_B.bits
///                            | FLAG_C.bits,
///     }
/// }
///
/// fn main() {
///     let e1 = FLAG_A | FLAG_C;
///     let e2 = FLAG_B | FLAG_C;
///     assert!((e1 | e2) == FLAG_ABC);   // union
///     assert!((e1 & e2) == FLAG_C);     // intersection
///     assert!((e1 - e2) == FLAG_A);     // set difference
///     assert!(!e2 == FLAG_A);           // set complement
/// }
/// ```
///
/// The generated `struct`s can also be extended with type and trait
/// implementations:
///
/// ```{.rust}
/// #[macro_use]
/// extern crate bitflags;
///
/// use std::fmt;
///
/// bitflags! {
///     flags Flags: u32 {
///         const FLAG_A   = 0b00000001,
///         const FLAG_B   = 0b00000010,
///     }
/// }
///
/// impl Flags {
///     pub fn clear(&mut self) {
///         self.bits = 0;  // The `bits` field can be accessed from within the
///                         // same module where the `bitflags!` macro was invoked.
///     }
/// }
///
/// impl fmt::Display for Flags {
///     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
///         write!(f, "hi!")
///     }
/// }
///
/// fn main() {
///     let mut flags = FLAG_A | FLAG_B;
///     flags.clear();
///     assert!(flags.is_empty());
///     assert_eq!(format!("{}", flags), "hi!");
///     assert_eq!(format!("{:?}", FLAG_A | FLAG_B), "FLAG_A | FLAG_B");
///     assert_eq!(format!("{:?}", FLAG_B), "FLAG_B");
/// }
/// ```
///
/// # Attributes
///
/// Attributes can be attached to the generated `struct` by placing them
/// before the `flags` keyword.
///
/// # Trait implementations
///
/// The `Copy`, `Clone`, `PartialEq`, `Eq`, `PartialOrd`, `Ord` and `Hash`
/// traits automatically derived for the `struct` using the `derive` attribute.
/// Additional traits can be derived by providing an explicit `derive`
/// attribute on `flags`.
///
/// The `FromIterator` trait is implemented for the `struct`, too, calculating
/// the union of the instances of the `struct` iterated over.
///
/// The `Debug` trait is also implemented by displaying the bits value of the
/// internal struct.
///
/// ## Operators
///
/// The following operator traits are implemented for the generated `struct`:
///
/// - `BitOr`: union
/// - `BitAnd`: intersection
/// - `BitXor`: toggle
/// - `Sub`: set difference
/// - `Not`: set complement
///
/// # Methods
///
/// The following methods are defined for the generated `struct`:
///
/// - `empty`: an empty set of flags
/// - `all`: the set of all flags
/// - `bits`: the raw value of the flags currently stored
/// - `from_bits`: convert from underlying bit representation, unless that
///                representation contains bits that do not correspond to a flag
/// - `from_bits_truncate`: convert from underlying bit representation, dropping
///                         any bits that do not correspond to flags
/// - `is_empty`: `true` if no flags are currently stored
/// - `is_all`: `true` if all flags are currently set
/// - `intersects`: `true` if there are flags common to both `self` and `other`
/// - `contains`: `true` all of the flags in `other` are contained within `self`
/// - `insert`: inserts the specified flags in-place
/// - `remove`: removes the specified flags in-place
/// - `toggle`: the specified flags will be inserted if not present, and removed
///             if they are.
#[macro_export]
macro_rules! bitflags {
    ($(#[$attr:meta])* flags $BitFlags:ident: $T:ty {
        $($(#[$Flag_attr:meta])* const $Flag:ident = $value:expr),+
    }) => {
        #[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
        $(#[$attr])*
        pub struct $BitFlags {
            bits: $T,
        }

        $($(#[$Flag_attr])* pub const $Flag: $BitFlags = $BitFlags { bits: $value };)+

        impl ::std::fmt::Debug for $BitFlags {
            fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                // This convoluted approach is to handle #[cfg]-based flag
                // omission correctly. Some of the $Flag variants may not be
                // defined in this module so we create an inner module which
                // defines *all* flags to the value of 0. Afterwards when the
                // glob import variants from the outer module, shadowing all
                // defined variants, leaving only the undefined ones with the
                // bit value of 0.
                #[allow(dead_code)]
                mod dummy {
                    // Now we define the "undefined" versions of the flags.
                    // This way, all the names exist, even if some are #[cfg]ed
                    // out.
                    $(const $Flag: super::$BitFlags = super::$BitFlags { bits: 0 };)+

                    #[inline]
                    pub fn fmt(self_: &super::$BitFlags,
                               f: &mut ::std::fmt::Formatter)
                               -> ::std::fmt::Result {
                        // Now we import the real values for the flags.
                        // Only ones that are #[cfg]ed out will be 0.
                        use super::*;

                        let mut _first = true;
                        $(
                            // $Flag.bits == 0 means that $Flag doesn't exist
                            if $Flag.bits != 0 && self_.contains($Flag) {
                                if !_first {
                                    try!(f.write_str(" | "));
                                }
                                _first = false;
                                try!(f.write_str(stringify!($Flag)));
                            }
                        )+
                        Ok(())
                    }
                }
                dummy::fmt(self, f)
            }
        }

        #[allow(dead_code)]
        impl $BitFlags {
            /// Returns an empty set of flags.
            #[inline]
            pub fn empty() -> $BitFlags {
                $BitFlags { bits: 0 }
            }

            /// Returns the set containing all flags.
            #[inline]
            pub fn all() -> $BitFlags {
                // See above `dummy` module for why this approach is taken.
                #[allow(dead_code)]
                mod dummy {
                    $(const $Flag: super::$BitFlags = super::$BitFlags { bits: 0 };)+

                    #[inline]
                    pub fn all() -> super::$BitFlags {
                        use super::*;
                        $BitFlags { bits: $($Flag.bits)|+ }
                    }
                }
                dummy::all()
            }

            /// Returns the raw value of the flags currently stored.
            #[inline]
            pub fn bits(&self) -> $T {
                self.bits
            }

            /// Convert from underlying bit representation, unless that
            /// representation contains bits that do not correspond to a flag.
            #[inline]
            pub fn from_bits(bits: $T) -> ::std::option::Option<$BitFlags> {
                if (bits & !$BitFlags::all().bits()) != 0 {
                    ::std::option::Option::None
                } else {
                    ::std::option::Option::Some($BitFlags { bits: bits })
                }
            }

            /// Convert from underlying bit representation, dropping any bits
            /// that do not correspond to flags.
            #[inline]
            pub fn from_bits_truncate(bits: $T) -> $BitFlags {
                $BitFlags { bits: bits } & $BitFlags::all()
            }

            /// Returns `true` if no flags are currently stored.
            #[inline]
            pub fn is_empty(&self) -> bool {
                *self == $BitFlags::empty()
            }

            /// Returns `true` if all flags are currently set.
            #[inline]
            pub fn is_all(&self) -> bool {
                *self == $BitFlags::all()
            }

            /// Returns `true` if there are flags common to both `self` and `other`.
            #[inline]
            pub fn intersects(&self, other: $BitFlags) -> bool {
                !(*self & other).is_empty()
            }

            /// Returns `true` all of the flags in `other` are contained within `self`.
            #[inline]
            pub fn contains(&self, other: $BitFlags) -> bool {
                (*self & other) == other
            }

            /// Inserts the specified flags in-place.
            #[inline]
            pub fn insert(&mut self, other: $BitFlags) {
                self.bits |= other.bits;
            }

            /// Removes the specified flags in-place.
            #[inline]
            pub fn remove(&mut self, other: $BitFlags) {
                self.bits &= !other.bits;
            }

            /// Toggles the specified flags in-place.
            #[inline]
            pub fn toggle(&mut self, other: $BitFlags) {
                self.bits ^= other.bits;
            }
        }

        impl ::std::ops::BitOr for $BitFlags {
            type Output = $BitFlags;

            /// Returns the union of the two sets of flags.
            #[inline]
            fn bitor(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits | other.bits }
            }
        }

        impl ::std::ops::BitXor for $BitFlags {
            type Output = $BitFlags;

            /// Returns the left flags, but with all the right flags toggled.
            #[inline]
            fn bitxor(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits ^ other.bits }
            }
        }

        impl ::std::ops::BitAnd for $BitFlags {
            type Output = $BitFlags;

            /// Returns the intersection between the two sets of flags.
            #[inline]
            fn bitand(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits & other.bits }
            }
        }

        impl ::std::ops::Sub for $BitFlags {
            type Output = $BitFlags;

            /// Returns the set difference of the two sets of flags.
            #[inline]
            fn sub(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits & !other.bits }
            }
        }

        impl ::std::ops::Not for $BitFlags {
            type Output = $BitFlags;

            /// Returns the complement of this set of flags.
            #[inline]
            fn not(self) -> $BitFlags {
                $BitFlags { bits: !self.bits } & $BitFlags::all()
            }
        }

        impl ::std::iter::FromIterator<$BitFlags> for $BitFlags {
            fn from_iter<T: ::std::iter::IntoIterator<Item=$BitFlags>>(iterator: T) -> $BitFlags {
                let mut result = Self::empty();
                for item in iterator {
                    result.insert(item)
                }
                result
            }
        }
    };
    ($(#[$attr:meta])* flags $BitFlags:ident: $T:ty {
        $($(#[$Flag_attr:meta])* const $Flag:ident = $value:expr),+,
    }) => {
        bitflags! {
            $(#[$attr])*
            flags $BitFlags: $T {
                $($(#[$Flag_attr])* const $Flag = $value),+
            }
        }
    };
}

#[cfg(test)]
#[allow(non_upper_case_globals, dead_code)]
mod tests {
    use std::hash::{SipHasher, Hash, Hasher};

    bitflags! {
        #[doc = "> The first principle is that you must not fool yourself — and"]
        #[doc = "> you are the easiest person to fool."]
        #[doc = "> "]
        #[doc = "> - Richard Feynman"]
        flags Flags: u32 {
            const FlagA       = 0b00000001,
            #[doc = "<pcwalton> macros are way better at generating code than trans is"]
            const FlagB       = 0b00000010,
            const FlagC       = 0b00000100,
            #[doc = "* cmr bed"]
            #[doc = "* strcat table"]
            #[doc = "<strcat> wait what?"]
            const FlagABC     = FlagA.bits
                               | FlagB.bits
                               | FlagC.bits,
        }
    }

    bitflags! {
        flags _CfgFlags: u32 {
            #[cfg(windows)]
            const _CfgA = 0b01,
            #[cfg(unix)]
            const _CfgB = 0b01,
            #[cfg(windows)]
            const _CfgC = _CfgA.bits | 0b10,
        }
    }

    bitflags! {
        flags AnotherSetOfFlags: i8 {
            const AnotherFlag = -1_i8,
        }
    }

    #[test]
    fn test_bits(){
        assert_eq!(Flags::empty().bits(), 0b00000000);
        assert_eq!(FlagA.bits(), 0b00000001);
        assert_eq!(FlagABC.bits(), 0b00000111);

        assert_eq!(AnotherSetOfFlags::empty().bits(), 0b00);
        assert_eq!(AnotherFlag.bits(), !0_i8);
    }

    #[test]
    fn test_from_bits() {
        assert!(Flags::from_bits(0) == Some(Flags::empty()));
        assert!(Flags::from_bits(0b1) == Some(FlagA));
        assert!(Flags::from_bits(0b10) == Some(FlagB));
        assert!(Flags::from_bits(0b11) == Some(FlagA | FlagB));
        assert!(Flags::from_bits(0b1000) == None);

        assert!(AnotherSetOfFlags::from_bits(!0_i8) == Some(AnotherFlag));
    }

    #[test]
    fn test_from_bits_truncate() {
        assert!(Flags::from_bits_truncate(0) == Flags::empty());
        assert!(Flags::from_bits_truncate(0b1) == FlagA);
        assert!(Flags::from_bits_truncate(0b10) == FlagB);
        assert!(Flags::from_bits_truncate(0b11) == (FlagA | FlagB));
        assert!(Flags::from_bits_truncate(0b1000) == Flags::empty());
        assert!(Flags::from_bits_truncate(0b1001) == FlagA);

        assert!(AnotherSetOfFlags::from_bits_truncate(0_i8) == AnotherSetOfFlags::empty());
    }

    #[test]
    fn test_is_empty(){
        assert!(Flags::empty().is_empty());
        assert!(!FlagA.is_empty());
        assert!(!FlagABC.is_empty());

        assert!(!AnotherFlag.is_empty());
    }

    #[test]
    fn test_is_all() {
        assert!(Flags::all().is_all());
        assert!(!FlagA.is_all());
        assert!(FlagABC.is_all());

        assert!(AnotherFlag.is_all());
    }

    #[test]
    fn test_two_empties_do_not_intersect() {
        let e1 = Flags::empty();
        let e2 = Flags::empty();
        assert!(!e1.intersects(e2));

        assert!(AnotherFlag.intersects(AnotherFlag));
    }

    #[test]
    fn test_empty_does_not_intersect_with_full() {
        let e1 = Flags::empty();
        let e2 = FlagABC;
        assert!(!e1.intersects(e2));
    }

    #[test]
    fn test_disjoint_intersects() {
        let e1 = FlagA;
        let e2 = FlagB;
        assert!(!e1.intersects(e2));
    }

    #[test]
    fn test_overlapping_intersects() {
        let e1 = FlagA;
        let e2 = FlagA | FlagB;
        assert!(e1.intersects(e2));
    }

    #[test]
    fn test_contains() {
        let e1 = FlagA;
        let e2 = FlagA | FlagB;
        assert!(!e1.contains(e2));
        assert!(e2.contains(e1));
        assert!(FlagABC.contains(e2));

        assert!(AnotherFlag.contains(AnotherFlag));
    }

    #[test]
    fn test_insert(){
        let mut e1 = FlagA;
        let e2 = FlagA | FlagB;
        e1.insert(e2);
        assert!(e1 == e2);

        let mut e3 = AnotherSetOfFlags::empty();
        e3.insert(AnotherFlag);
        assert!(e3 == AnotherFlag);
    }

    #[test]
    fn test_remove(){
        let mut e1 = FlagA | FlagB;
        let e2 = FlagA | FlagC;
        e1.remove(e2);
        assert!(e1 == FlagB);

        let mut e3 = AnotherFlag;
        e3.remove(AnotherFlag);
        assert!(e3 == AnotherSetOfFlags::empty());
    }

    #[test]
    fn test_operators() {
        let e1 = FlagA | FlagC;
        let e2 = FlagB | FlagC;
        assert!((e1 | e2) == FlagABC);     // union
        assert!((e1 & e2) == FlagC);       // intersection
        assert!((e1 - e2) == FlagA);       // set difference
        assert!(!e2 == FlagA);             // set complement
        assert!(e1 ^ e2 == FlagA | FlagB); // toggle
        let mut e3 = e1;
        e3.toggle(e2);
        assert!(e3 == FlagA | FlagB);

        let mut m4 = AnotherSetOfFlags::empty();
        m4.toggle(AnotherSetOfFlags::empty());
        assert!(m4 == AnotherSetOfFlags::empty());
    }

    #[test]
    fn test_from_iterator() {
        assert_eq!([].iter().cloned().collect::<Flags>(), Flags::empty());
        assert_eq!([FlagA, FlagB].iter().cloned().collect::<Flags>(), FlagA | FlagB);
        assert_eq!([FlagA, FlagABC].iter().cloned().collect::<Flags>(), FlagABC);
    }

    #[test]
    fn test_lt() {
        let mut a = Flags::empty();
        let mut b = Flags::empty();

        assert!(!(a < b) && !(b < a));
        b = FlagB;
        assert!(a < b);
        a = FlagC;
        assert!(!(a < b) && b < a);
        b = FlagC | FlagB;
        assert!(a < b);
    }

    #[test]
    fn test_ord() {
        let mut a = Flags::empty();
        let mut b = Flags::empty();

        assert!(a <= b && a >= b);
        a = FlagA;
        assert!(a > b && a >= b);
        assert!(b < a && b <= a);
        b = FlagB;
        assert!(b > a && b >= a);
        assert!(a < b && a <= b);
    }

    fn hash<T: Hash>(t: &T) -> u64 {
        let mut s = SipHasher::new_with_keys(0, 0);
        t.hash(&mut s);
        s.finish()
    }

    #[test]
    fn test_hash() {
        let mut x = Flags::empty();
        let mut y = Flags::empty();
        assert!(hash(&x) == hash(&y));
        x = Flags::all();
        y = FlagABC;
        assert!(hash(&x) == hash(&y));
    }

    #[test]
    fn test_debug() {
        assert_eq!(format!("{:?}", FlagA | FlagB), "FlagA | FlagB");
        assert_eq!(format!("{:?}", FlagABC), "FlagA | FlagB | FlagC | FlagABC");
    }
}