1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
//! Provides the generics and interfaces for the specific Layers.
//!
//! See [Layers][layers]
//! [layers]: ../layers/index.html
use co::prelude::*;
use layers::*;
use weight::WeightConfig;
use util::{ArcLock, native_backend, LayerOps};
use std::fmt;
use std::cmp;
use std::collections::{HashMap, HashSet};
use std::fs::File;
use std::io::{self, BufReader};
use std::path::Path;
use std::rc::Rc;
use std::sync::{Arc, RwLock};
use leaf_capnp::layer as capnp_layer;
use leaf_capnp::layer_config as capnp_layer_config;
use leaf_capnp::layer_config::layer_type as capnp_layer_type;
use capnp_util::*;

#[derive(Debug)]
/// The generic Layer
pub struct Layer<B: IBackend> {
    /// Identifies the Network
    ///
    /// The name is mainly used for logging purposes.
    pub name: String,
    /// The configuration of the Layer
    pub config: Box<LayerConfig>,
    /// The [implementation][1] of the Layer.
    /// [1]: ../layers/index.html
    ///
    /// This is the part that does most of the work ([forward][2]/[backward][3]).
    /// [2]: ./trait.ILayer.html#method.forward
    /// [3]: ./trait.ILayer.html#method.backward
    pub worker: Box<ILayer<B>>,

    backend: Rc<B>,

    /// Determines if layer will skip comutations for [backward][1] step.
    /// [1]: ./trait.ILayer.html#method.backward
    needs_backward: bool,

    /// The vector that stores shared references to the weights in the form of blobs.
    pub weights_data: Vec<ArcLock<SharedTensor<f32>>>,
    /// The vector that stores shared references to the weights in the form of blobs.
    pub weights_gradient: Vec<ArcLock<SharedTensor<f32>>>,
    // contains all the learnable weights (does not include bias(?) and shared weights)
    learnable_weights: Vec<ArcLock<SharedTensor<f32>>>,
    // learning rate for each weight
    weights_lr: Vec<Option<f32>>,
    // weight decay for each weight
    weights_weight_decay: Vec<Option<f32>>,
    // display name for each weight
    weights_display_names: Vec<String>,

    /// Vector indicating whether to compute the diff of each weight blob.
    ///
    /// You can safely ignore false values and always compute gradients
    /// for all weights, but possibly with wasteful computation.
    ///
    /// Can be used by some [Layer implementations][1] to optimize performance.
    /// [1]: ../layers/index.html
    weight_propagate_down: Vec<bool>,

    /// References to all the input blobs of the layer.
    pub input_blobs_data: Vec<ArcLock<SharedTensor<f32>>>,
    /// References to all the input blobs of the layer.
    pub input_blobs_gradient: Vec<ArcLock<SharedTensor<f32>>>,
    /// Names for all the input blobs of the layer.
    pub input_blob_names: Vec<String>,
    input_need_backwards: Vec<bool>,

    /// References to all the output blobs of the layer.
    pub output_blobs_data: Vec<ArcLock<SharedTensor<f32>>>,
    /// References to all the output blobs of the layer.
    pub output_blobs_gradient: Vec<ArcLock<SharedTensor<f32>>>,
    output_blob_names: Vec<String>,
    /// The vector that indicates whether each output blob contributes to
    /// the [loss][1] of the network and with which weight.
    /// [1]: http://caffe.berkeleyvision.org/tutorial/loss.html
    loss: Vec<f32>,

    /// All the blobs of the layer that can be addressed by name.
    ///
    /// Does not contain anonymous blobs.
    pub blob_names: HashMap<String, (ArcLock<SharedTensor<f32>>, ArcLock<SharedTensor<f32>>)>,
}

impl<B: IBackend> Layer<B> {
    /// Connect the layer to another layers and set up tensors for intermediate results and weights.
    ///
    /// Connects to the outputs provided by other layers via the `registry`.
    /// Adds output blobs to the layer and then adds them to the `registry`, so the next
    /// layers can connect them as their inputs.
    /// In the end it initializes the underlying [layer implementation][2].
    ///
    /// [2]: ./trait.ILayer.html
    ///
    /// Called during initialization of containter layers.
    pub fn connect(
        &mut self,
        registry: &mut HashMap<String, (ArcLock<SharedTensor<f32>>, ArcLock<SharedTensor<f32>>)>,
        weight_registry: &mut HashMap<String, (ArcLock<SharedTensor<f32>>, ArcLock<SharedTensor<f32>>, Option<f32>, Option<f32>)>) {
        // connect to all required inputs
        for input_name in &self.config.inputs.clone() {
            self.connect_input(input_name, registry)
        }
        // setup outputs
        for (output_id, _) in self.config.outputs.clone().iter().rev().enumerate() {
            self.append_output(output_id, registry);
        }
        let config = self.config.clone();
        for (output_id, _) in self.config.outputs.clone().iter().rev().enumerate() {
            self.append_weight(&config, weight_registry, 0, output_id);
        }

        // If the layer specifies that AutoTopBlobs() -> true and the LayerParameter
        // specified fewer than the required number (as specified by
        // exact_num_top_blobs() or min_output_blobs()), allocate them here.
        let auto_output_blobs = self.worker.auto_output_blobs();
        debug!("Layer {} - auto_output_blobs: {}", &self.name, &auto_output_blobs);
        let min_output_blobs = self.worker.min_output_blobs();
        let exact_num_output_blobs = self.worker.exact_num_output_blobs().unwrap_or(0);
        if auto_output_blobs {
            let needed_num_outputs = cmp::max(min_output_blobs, exact_num_output_blobs);
            for _ in 0..(needed_num_outputs - self.output_blobs_data.len()) {
                // Add "anonymous" output blobs -- do not add to registry
                // as we don't want these blobs to be usable as input
                // to other layers.
                info!("Adding anonymous output blob for layer {}", &self.name);
                self.create_anonymous_output();
            }
        }

        self.worker.init(self.backend.clone());
        self.reshape();
        self.worker.resize_shared_workspace(self.backend.clone(), None);
        for t in &self.output_blobs_data {
            debug!("Layer {} - output shape: {:?}", self.name, t.read().unwrap().desc());
        }
    }

    /// Append blob as [input blob][1] to the Layer.
    /// [1]: ../layer/index.html
    ///
    /// During network initalization the blobs will be appended to the Layers as per their
    /// [LayerConfig][3]. It is also determined if a output blob skips backpropagation
    /// from [LayerConfig.propagate_down][3] (see also [init_backprop][5]).
    ///
    /// [3]: ../layer/struct.LayerConfig.html
    /// [5]: #method.init_backprop
    fn connect_input(&mut self, blob_name: &str, available_blobs: &mut HashMap<String, (ArcLock<SharedTensor<f32>>, ArcLock<SharedTensor<f32>>)>) {
        let input_id = self.config.inputs.iter().position(|input_name| input_name == blob_name).unwrap();

        if !available_blobs.contains_key(&*blob_name) {
            error!("Unknown input blob {} (layer '{}', input_id: {})",
                   blob_name,
                   self.name,
                   input_id);
        }
        info!("Input {:<15} -> Layer {:>15}", blob_name, self.name);

        self.input_blob_names.push(blob_name.to_owned());
        self.input_blobs_data.push(available_blobs.get(&*blob_name).expect(&format!("Unknown blob name {}", blob_name)).0.clone());
        self.input_blobs_gradient.push(available_blobs.get(&*blob_name).expect(&format!("Unknown blob name {}", blob_name)).1.clone());
        // available_blobs.remove(&*blob_name);

        let mut propagate_down = true;
        // Check if the backpropagation on input_id should be skipped
        if !self.config.propagate_down.is_empty() {
            propagate_down = self.config.propagate_down[input_id];
        }
        let need_backward = propagate_down;
        self.input_need_backwards.push(need_backward);
    }

    /// Append blob as [output blob][1] to the Layer.
    /// [1]: ../layer/index.html
    ///
    /// During network initalization the blobs will be appended to the Layers as per their
    /// [LayerConfig][2]. It is also determined if computations can be done in-place, in which
    /// no additional Blob will be allocated.</br>
    /// Finally, the new blob will be added to the registry, so that the other layers can
    /// connect it as their input.
    /// [2]: ../layer/struct.LayerConfig.html
    fn append_output(&mut self,
                  output_id: usize,
                  registry: &mut HashMap<String, (ArcLock<SharedTensor<f32>>, ArcLock<SharedTensor<f32>>)>) {
        let layer_config = &self.config;

        let blob_name = layer_config.output(output_id).unwrap().clone();
        let blob_data: ArcLock<SharedTensor<f32>>;
        let blob_gradient: ArcLock<SharedTensor<f32>>;

        if layer_config.input(output_id).is_some() && *layer_config.input(output_id).unwrap() == blob_name {
            info!("Layer {:<15} -> Output {:>15} (in-place)", layer_config.name, blob_name);
            blob_data = registry[&blob_name].0.clone();
            blob_gradient = registry[&blob_name].1.clone();
        } else if registry.contains_key(&blob_name) {
            // If we are not doing in-place computation but have duplicated blobs, raise an
            // error.
            error!("Top blob {} produced by multiple sources.", blob_name);
            return
        } else {
            {
                info!("Layer {:<15} -> Output {:>15}", self.name, blob_name);
                info!("Output {} = {}", output_id, blob_name);
            }

            let backend: Rc<IBackend<F=B::F>> = self.backend.clone();
            blob_data = Arc::new(RwLock::new(SharedTensor::new(backend.device(), &vec![1,1,1]).unwrap())); // [1,1,1] for CUDA
            blob_gradient = Arc::new(RwLock::new(SharedTensor::new(backend.device(), &vec![1,1,1]).unwrap())); // [1,1,1] for CUDA
        }
        self.output_blob_names.push(blob_name.clone());
        self.output_blobs_data.push(blob_data.clone());
        self.output_blobs_gradient.push(blob_gradient.clone());
        self.blob_names.insert(blob_name.clone(), (blob_data.clone(), blob_gradient.clone()));
        registry.insert(blob_name.clone(), (blob_data.clone(), blob_gradient.clone()));
    }

    /// Append anonymous blob as [output blob][1] to the Layer.
    /// [1]: ../layer/index.html
    ///
    /// [Layer implementations][2] may request creation of anonymous output blobs
    /// via [auto_output_blobs][3]. Since the blobs are not named, other layers can
    /// not use them as their input blobs.
    /// [2]: ./trait.ILayer.html
    /// [3]: ./trait.ILayer.html#method.auto_output_blobs
    fn create_anonymous_output(&mut self) {
        let blob_name = "(automatic)".to_owned();

        info!("{} -> {}", self.name, blob_name);

        let backend: Rc<IBackend<F=B::F>> = self.backend.clone();
        let output_data = Arc::new(RwLock::new(SharedTensor::new(backend.device(), &vec![1,1,1]).unwrap())); // [1,1,1] for CUDA
        let output_gradient = Arc::new(RwLock::new(SharedTensor::new(backend.device(), &vec![1,1,1]).unwrap())); // [1,1,1] for CUDA
        self.output_blobs_data.push(output_data);
        self.output_blobs_gradient.push(output_gradient);
    }

    fn append_weight(&mut self, layer_config: &LayerConfig, registry: &mut HashMap<String, (ArcLock<SharedTensor<f32>>, ArcLock<SharedTensor<f32>>, Option<f32>, Option<f32>)>, layer_id: usize, weight_id: usize) {
        if self.worker.auto_weight_blobs() {
            info!("Layer {} - appending weight", &layer_config.name);
            let weights_len = self.weights_data.len();
            let weight_name = if weights_len > weight_id {
                layer_config.param(weight_id).unwrap().name.clone()
            } else {
                "".to_owned()
            };

            // use weight_name (or weight_id as a fallback) as display_name
            let display_name = if !weight_name.is_empty() {
                weight_name.clone()
            } else {
                format!("{}-{}", self.name, weight_id)
            };
            self.weights_display_names.push(display_name.clone());
            // create name for registry
            let registry_name = format!("SHARED_WEIGHT_{}", display_name);

            // add to tracking vectors
            let net_weight_id = weights_len;
            let output_data = self.output_blobs_data[weight_id].read().unwrap();
            debug!("Layer {} - creating weight and gradient of size {:?}", &layer_config.name, output_data.desc());
            let weight_data = Arc::new(RwLock::new(SharedTensor::<f32>::new(output_data.latest_device(), output_data.desc()).unwrap()));
            let weight_gradient = Arc::new(RwLock::new(SharedTensor::<f32>::new(output_data.latest_device(), output_data.desc()).unwrap()));
            self.weights_data.push(weight_data.clone());
            self.weights_gradient.push(weight_gradient.clone());

            let mut weight_config = &WeightConfig::default();
            if layer_config.params_len() > weight_id {
                weight_config = layer_config.param(weight_id).unwrap();
            }
            // This layer "owns" this weight blob -- it is either anonymous
            // (i.e., not given a weight_name) or explicitly given a name that we
            // haven't already seen.
            if weight_name.is_empty() || !registry.contains_key(&registry_name) {
                // self.weight_owners.push(None);
                if !weight_name.is_empty() {
                    registry.insert(weight_name.clone(),
                        (weight_data.clone(), weight_gradient.clone(), weight_config.lr_mult, weight_config.decay_mult));
                }
                let learnable_weight_id = self.learnable_weights.len();
                self.learnable_weights.push(weight_data.clone());
                // self.learnable_weight_ids.push(learnable_weight_id);
                self.weights_lr.push(weight_config.lr_mult);
                self.weights_weight_decay.push(weight_config.decay_mult);
            } else {
                // Named weight blob with name we've seen before: share weights

                let (shared_weight_data, shared_weight_gradient, shared_lr, shared_decay_mult) = registry.get(&registry_name).unwrap().clone();
                info!("Sharing weight blob '{}'", weight_name.clone());

                // can only share parameters if both have same lr_mult
                if let Some(lr_mult) = weight_config.lr_mult {
                    if let Some(owner_lr_mult) = shared_lr {
                        if !lr_mult.eq(&owner_lr_mult) {
                            error!("Shared param '{}' has mismatched lr_mult.",
                                   weight_name.clone());
                        }
                    } else {
                        // this is the first shared instance that has a lr_mult value so we take that
                        registry.remove(&registry_name).unwrap();
                        registry.insert(registry_name.clone(), (shared_weight_data.clone(), shared_weight_gradient.clone(), weight_config.lr_mult, shared_decay_mult));
                    }
                }
                // can only share weights if both have same decay_mult
                if let Some(decay_mult) = weight_config.decay_mult {
                    if let Some(owner_decay_mult) = shared_decay_mult {
                        if !decay_mult.eq(&owner_decay_mult) {
                            error!("Shared param '{}' has mismatched decay_mult.",
                                   weight_name.clone());
                        }
                    } else {
                        // this is the first shared instance that has a decay_mult value so we take that
                        registry.remove(&registry_name).unwrap();
                        registry.insert(registry_name, (shared_weight_data.clone(), shared_weight_gradient.clone(), shared_lr, weight_config.decay_mult));
                    }
                }
            }
        }
    }

    fn reshape(&mut self) {
        match self.is_using_in_place() {
            false => {
                self.worker.reshape(self.backend.clone(),
                                    &mut self.input_blobs_data,
                                    &mut self.input_blobs_gradient,
                                    &mut self.weights_data,
                                    &mut self.weights_gradient,
                                    &mut self.output_blobs_data,
                                    &mut self.output_blobs_gradient);
            },
            true => {
                self.worker.reshape(self.backend.clone(),
                                    &mut vec![],
                                    &mut vec![],
                                    &mut self.weights_data,
                                    &mut self.weights_gradient,
                                    &mut self.output_blobs_data,
                                    &mut self.output_blobs_gradient);
            },
        }
    }

    /// Initializes layer for [backpropagation][1]
    /// [1]: https://en.wikipedia.org/wiki/Backpropagation
    ///
    /// Go through all the blobs of a layer to determine which blobs contribute to the
    /// loss of the next layer. We can skip backward computation for blobs that don't contribute
    /// to the loss.
    /// If all of the blobs skip backpropagation we set a flag to skip backpropagation
    /// of the whole layer.
    pub fn init_backprop(&mut self,
                     blobs_under_loss: &mut HashSet<String>,
                     blobs_skip_backp: &mut HashSet<String>) {
        let mut layer_contributes_loss = false;
        let mut layer_skip_propagate_down = true;
        for (output_id, _) in self.output_blobs_data.iter().enumerate() {
            let blob_name = self.output_blob_names.get(output_id);

            // layer is a loss layer or under a loss layer
            if self.loss(output_id).is_some() || blob_name.is_some() && blobs_under_loss.contains(blob_name.unwrap()) {
                layer_contributes_loss = true;
            }
            // layer is not marked to skip backpropagation
            if blob_name.is_none() || blob_name.is_some() && !blobs_skip_backp.contains(blob_name.unwrap()) {
                layer_skip_propagate_down = false;
            }
            // layer contributes loss to some
            if layer_contributes_loss && !layer_skip_propagate_down {
                break;
            }
        }

        // If this layer can skip backward computation, also all his input blobs
        // don't need backpropagation
        if self.needs_backward && layer_skip_propagate_down {
            self.needs_backward = false;
            for (input_id, _) in self.input_blobs_data.iter().enumerate() {
                self.input_need_backwards[input_id] = false;
            }
        }
        // layer doesn't contribute loss so it does not need to be backpropagated
        if !layer_contributes_loss {
            self.needs_backward = false;
        }
        {
            info!("{} needs backward computation: {}",
                  self.name,
                  self.needs_backward);
        }

        for (input_id, input_name) in self.input_blob_names.iter().enumerate() {
            if layer_contributes_loss {
                blobs_under_loss.insert(input_name.clone());
            } else {
                self.input_need_backwards[input_id] = false;
            }
            if !self.input_need_backwards[input_id] {
                blobs_skip_backp.insert(input_name.clone());
            }
        }
    }

    /// Set [backpropagation][1] flags to force this layer to backpropagate.
    /// [1]: https://en.wikipedia.org/wiki/Backpropagation
    ///
    /// Is executed during Network initalization if [NetworkConfig][2].force_backward is true.
    /// Forcing backpropagation is useful for debugging.
    pub fn init_force_backward(&mut self) {
        self.needs_backward = true;
        for (input_id, _) in self.input_need_backwards.clone().iter().enumerate() {
            self.input_need_backwards[input_id] =
                *self.input_need_backwards
                     .get(input_id)
                     .unwrap_or(&self.worker.allow_force_backward(input_id));
        }
        for (weight_id, _) in self.weights_data.clone().iter().enumerate() {
            self.set_weight_propagate_down(weight_id, true);
        }
    }

    /// Expose the internal inputs of a container layer.
    fn expose_inputs(&mut self) {
        if let Some(inputs) = self.worker.inputs_data() {
            self.input_blobs_data = inputs;
        }
        if let Some(gradients) = self.worker.inputs_gradients() {
            self.input_blobs_gradient = gradients;
        }
    }

    /// Expose the internal outputs of a container layer.
    fn expose_outputs(&mut self) {
        if let Some(outputs) = self.worker.outputs_data() {
            self.output_blobs_data = outputs;
        }
        if let Some(gradients) = self.worker.outputs_gradients() {
            self.output_blobs_gradient = gradients;
        }
    }

    /// Uses the underlying layer implementation to compute a forward step.
    ///
    /// See [ILayer.forward](./trait.ILayer.html#method.forward)
    pub fn forward(&mut self, inputs: &[ArcLock<SharedTensor<f32>>]) -> Vec<ArcLock<SharedTensor<f32>>> {
        debug!("LAYER: {:?}", &self.name);
        for (input_i, input) in inputs.iter().enumerate() {
            let reshaped_shape = self.input_blobs_data[input_i].read().unwrap().desc().clone();
            self.input_blobs_data[input_i] = input.clone();
            // reshape input tensor to the reshaped shape
            let old_shape = self.input_blobs_data[input_i].read().unwrap().desc().clone();
            if old_shape.size() != reshaped_shape.size() {
                panic!("The provided input does not have the expected shape of {:?}", reshaped_shape);
            }
            self.input_blobs_data[input_i].write().unwrap().reshape(&reshaped_shape).unwrap();
        }

        self.worker.sync(&self.backend,
                         &mut self.input_blobs_data, &mut self.input_blobs_gradient,
                         &mut self.weights_data, &mut self.weights_gradient,
                         &mut self.output_blobs_data, &mut self.output_blobs_gradient);

        let forward_time = timeit_loops!(1, {
            if self.is_using_in_place() {
                self.worker.forward(&self.backend, &vec![], &self.weights_data, &mut self.output_blobs_data);
            } else {
                self.worker.forward(&self.backend, &self.input_blobs_data, &self.weights_data, &mut self.output_blobs_data);
            }
        });
        debug!("{:<15} - Forward time: {:.5} ms", &self.name, forward_time / 0.001);
        self.output_blobs_data.clone()
    }

    /// Uses the underlying layer implementation to compute a backward step.
    ///
    /// See [ILayer.backward](./trait.ILayer.html#method.backward)
    pub fn backward(&mut self, output_gradients: &[ArcLock<SharedTensor<f32>>]) -> Vec<ArcLock<SharedTensor<f32>>> {
        if self.needs_backward {
            let input_gradients = self.backward_input(output_gradients);
            self.backward_parameters();
            input_gradients
        } else {
            vec![]
        }
    }

    /// Calculate the gradient w.r.t. input.
    ///
    /// This method is mostly used when doing backpropagation.
    pub fn backward_input(&mut self, output_gradients: &[ArcLock<SharedTensor<f32>>]) -> Vec<ArcLock<SharedTensor<f32>>> {
        for (output_i, output) in output_gradients.iter().enumerate() {
            self.output_blobs_gradient[output_i] = output.clone();
        }

        self.worker.sync(&self.backend,
                         &mut self.input_blobs_data, &mut self.input_blobs_gradient,
                         &mut self.weights_data, &mut self.weights_gradient,
                         &mut self.output_blobs_data, &mut self.output_blobs_gradient);

        if self.is_using_in_place() {
            self.worker.backward_input(&self.backend,
                                 &self.weights_data,
                                 &vec![],
                                 &vec![],
                                 &self.input_blobs_data,
                                 &mut self.input_blobs_gradient)
        } else {
            self.worker.backward_input(&self.backend,
                                 &self.weights_data,
                                 &self.output_blobs_data,
                                 &self.output_blobs_gradient,
                                 &self.input_blobs_data,
                                 &mut self.input_blobs_gradient)
        }

        self.input_blobs_gradient.clone()
    }

    /// Calculate the gradient w.r.t. parameters.
    ///
    /// "Parameters" here refers to weights and also possibly bias, depending on the layer.
    ///
    /// This method is mostly used when doing backpropagation.
    pub fn backward_parameters(&mut self) {
        self.worker.sync(&self.backend,
                         &mut self.input_blobs_data, &mut self.input_blobs_gradient,
                         &mut self.weights_data, &mut self.weights_gradient,
                         &mut self.output_blobs_data, &mut self.output_blobs_gradient);

        self.worker.backward_parameters(&self.backend,
                             &self.output_blobs_data,
                             &self.output_blobs_gradient,
                             &self.input_blobs_data,
                             &mut self.weights_gradient)
    }

    /// Synchronize the layers backend.
    pub fn synchronize(&self) {
        self.backend.synchronize().unwrap();
    }

    /// Updates the [weights][1] with the weight update computed by the [Solver][2].
    /// [1]: https://en.wikipedia.org/wiki/Synaptic_weight
    /// [2]: ../solver/struct.Solver.html
    ///
    /// Updating the weights is the last step of computing a [Solver][2] minibatch.
    /// The update value is computed in previous steps according to the [learning rate policy][3]
    ///
    /// [3]: ../solver/enum.LRPolicy.html
    pub fn update_weights<SolverB: IBackend + ::util::SolverOps<f32>>(&mut self, backend: &SolverB) {
        let mut shared_a = ::util::native_scalar(-1f32);
        let _ = shared_a.add_device(IBackend::device(backend));
        shared_a.sync(IBackend::device(backend)).unwrap();
        for (weight_gradient, weight_data) in self.learnable_weights_gradients().iter().zip(&mut self.learnable_weights_data()) {
            weight_gradient.write().unwrap().sync(IBackend::device(backend)).unwrap();
            weight_data.write().unwrap().sync(IBackend::device(backend)).unwrap();
            backend.axpy_plain(&shared_a, &weight_gradient.read().unwrap(), &mut weight_data.write().unwrap()).unwrap();
        }
    }

    /// Clears the [weights][1] gradients and zero-inits them.
    /// [1]: https://en.wikipedia.org/wiki/Synaptic_weight
    ///
    /// The gradients for the weights accumulate over the backpropagation steps of
    /// a [Solver][2] minibatch and are cleared between each minibatch
    /// to start over with a clean slate.
    ///
    /// [2]: ../solver/struct.Solver.html
    pub fn clear_weights_gradients(&mut self) {
        for weight_gradient in &mut self.learnable_weights_gradients().iter() {
            let filler = ::weight::FillerType::Constant {
                value: 0f32
            };
            filler.fill(&mut weight_gradient.write().unwrap());
        }
    }

    /// Serialize the Layer and it's weights to a Cap'n Proto file at the specified path.
    ///
    /// You can find the capnp schema [here](../../../../capnp/leaf.capnp).
    ///
    /// ```
    /// # #[cfg(feature = "native")]
    /// # mod native {
    /// # use std::rc::Rc;
    /// # use leaf::layer::*;
    /// # use leaf::layers::*;
    /// # use leaf::util;
    /// # pub fn test() {
    /// #
    /// let mut net_cfg = SequentialConfig::default();
    /// // ... set up network ...
    /// let cfg = LayerConfig::new("network", net_cfg);
    ///
    /// let native_backend = Rc::new(util::native_backend());
    /// let mut layer = Layer::from_config(native_backend, &cfg);
    /// // ... do stuff with the layer ...
    /// // ... and save it
    /// layer.save("mynetwork").unwrap();
    /// #
    /// # }}
    /// #
    /// # #[cfg(not(feature = "native"))]
    /// # mod native {
    /// # pub fn test() {}
    /// # }
    /// #
    /// # fn main() {
    /// #     if cfg!(feature = "native") {
    /// #         ::native::test();
    /// #    }
    /// # }
    /// ```
    pub fn save<P: AsRef<Path>>(&mut self, path: P) -> io::Result<()> {
        let path = path.as_ref();
        let ref mut out = try!(File::create(path));

        let mut message = ::capnp::message::Builder::new_default();
        {
            let mut layer = message.init_root::<capnp_layer::Builder>();
            self.write_capnp(&mut layer);
        }
        ::capnp::serialize_packed::write_message(out, &message).unwrap();

        Ok(())
    }

    /// Read a Cap'n Proto file at the specified path and deserialize the Layer inside it.
    ///
    /// You can find the capnp schema [here](../../../../capnp/leaf.capnp).
    ///
    /// ```
    /// # extern crate leaf;
    /// # extern crate collenchyma;
    /// # #[cfg(feature = "native")]
    /// # mod native {
    /// # use std::rc::Rc;
    /// # use leaf::layer::*;
    /// # use leaf::layers::*;
    /// # use leaf::util;
    /// use collenchyma::prelude::*;
    /// # pub fn test() {
    ///
    /// let native_backend = Rc::new(util::native_backend());
    /// # let mut net_cfg = SequentialConfig::default();
    /// # let cfg = LayerConfig::new("network", net_cfg);
    /// # let mut layer = Layer::from_config(native_backend.clone(), &cfg);
    /// # layer.save("mynetwork").unwrap();
    /// // Load layer from file "mynetwork"
    /// let layer = Layer::<Backend<Native>>::load(native_backend, "mynetwork").unwrap();
    /// #
    /// # }}
    /// #
    /// # #[cfg(not(feature = "native"))]
    /// # mod native {
    /// # pub fn test() {}
    /// # }
    /// #
    /// # fn main() {
    /// #     if cfg!(feature = "native") {
    /// #         ::native::test();
    /// #    }
    /// # }
    /// ```
    pub fn load<LB: IBackend + LayerOps<f32> + 'static, P: AsRef<Path>>(backend: Rc<LB>, path: P) -> io::Result<Layer<LB>> {
        let path = path.as_ref();
        let ref mut file = try!(File::open(path));
        let mut reader = BufReader::new(file);

        let message_reader = ::capnp::serialize_packed::read_message(&mut reader,
                                                                     ::capnp::message::ReaderOptions::new()).unwrap();
        let read_layer = message_reader.get_root::<capnp_layer::Reader>().unwrap();

        let name = read_layer.get_name().unwrap().to_owned();
        let layer_config = LayerConfig::read_capnp(read_layer.get_config().unwrap());
        let mut layer = Layer::from_config(backend, &layer_config);
        layer.name = name;

        let read_weights = read_layer.get_weights_data().unwrap();

        let names = layer.learnable_weights_names();
        let weights_data = layer.learnable_weights_data();

        let native_backend = Backend::<Native>::default().unwrap();
        for (i, (name, weight)) in names.iter().zip(weights_data).enumerate() {
            for j in 0..read_weights.len() {
                let capnp_weight = read_weights.get(i as u32);
                if capnp_weight.get_name().unwrap() != name {
                    continue
                }

                let mut weight_lock = weight.write().unwrap();
                weight_lock.sync(native_backend.device()).unwrap();

                let capnp_tensor = capnp_weight.get_tensor().unwrap();
                let mut shape = Vec::new();
                let capnp_shape = capnp_tensor.get_shape().unwrap();
                for k in 0..capnp_shape.len() {
                    shape.push(capnp_shape.get(k) as usize)
                }
                weight_lock.reshape(&shape).unwrap();

                let mut native_slice = weight_lock.get_mut(native_backend.device()).unwrap().as_mut_native().unwrap().as_mut_slice::<f32>();
                let data = capnp_tensor.get_data().unwrap();
                for k in 0..data.len() {
                    native_slice[k as usize] = data.get(k);
                }
            }
        }

        Ok(layer)
    }

    /// Sets whether the layer should compute gradients w.r.t. a
    /// weight at a particular index given by `weight_id`.
    ///
    /// See [`weight_propagate_down`][1]
    /// ./struct.Layer.html
    pub fn set_weight_propagate_down(&mut self, weight_id: usize, value: bool) {
        if self.weight_propagate_down.len() <= weight_id {
            self.weight_propagate_down.resize(weight_id + 1, true);
        }
        self.weight_propagate_down[weight_id] = value;

    }

    /// Returns `true` when the layer is using in-place computation.
    ///
    /// For a layer to use in-place computation it needs to support it via `compute_in_place`
    /// and the names of the first input and output tensor have to match.
    pub fn is_using_in_place(&self) -> bool {
        self.worker.compute_in_place() &&
        self.input_blob_names.get(0).is_some() &&
        self.output_blob_names.get(0).is_some() &&
        self.input_blob_names[0] == self.output_blob_names[0]
    }

    /// Returns the names of all the input blobs.
    pub fn input_blob_names(&self) -> &[String] {
        &self.input_blob_names
    }

    /// Returns the [loss weight][1] associated with the weight blob
    /// with id `weight_id`.
    /// [1]: http://caffe.berkeleyvision.org/tutorial/loss.html
    pub fn loss(&self, weight_id: usize) -> Option<&f32> {
        self.loss.get(weight_id)
    }

    /// Returns all the learnable weights in the layer.
    ///
    /// If the layer is a container layer it will return all the weights of the
    /// layers inside it.
    pub fn learnable_weights_data(&self) -> Vec<ArcLock<SharedTensor<f32>>> {
        if let Some(weights) = self.worker.learnable_weights() { weights }
        else { self.weights_data.clone() }
    }

    /// Returns the gradients for all the learnable weights in the layer.
    ///
    /// If the layer is a container layer it will return all the gradients of the
    /// layers inside it.
    pub fn learnable_weights_gradients(&self) -> Vec<ArcLock<SharedTensor<f32>>> {
        if let Some(gradients) = self.worker.learnable_weights_gradients() { gradients }
        else { self.weights_gradient.clone() }
    }

    /// Returns the names of all the learnable weights in the layer.
    ///
    /// If the layer is a container layer it will return all the names of the
    /// layers inside it.
    pub fn learnable_weights_names(&self) -> Vec<String> {
        if let Some(names) = self.worker.learnable_weights_names() { names }
        else { self.weights_display_names.clone() }
    }

    /// Returns the learning rate for all the learnable weights in the layer.
    ///
    /// If the layer is a container layer it will return all learning rates of the
    /// layers inside it.
    pub fn learnable_weights_lr(&self) -> Vec<Option<f32>> {
        if let Some(lr) = self.worker.learnable_weights_lr() { lr }
        // else { self.weights_lr.clone() }
        else {
            self.learnable_weights_data().iter().map(|_| Some(1f32)).collect::<Vec<_>>() }
    }
}

#[allow(unsafe_code)]
unsafe impl<B: IBackend> Send for Layer<B> {}

impl<'a, B: IBackend> CapnpWrite<'a> for Layer<B> {
    type Builder = capnp_layer::Builder<'a>;

    /// Write the Layer into a capnp message.
    fn write_capnp(&self, builder: &mut Self::Builder) {
        builder.set_name(&self.name);
        {
            let mut layer_config = builder.borrow().init_config();
            self.config.write_capnp(&mut layer_config);
        }
        {
            let native_backend = Backend::<Native>::default().unwrap();
            let mut weights = builder.borrow().init_weights_data(self.learnable_weights_names().len() as u32);
            let names = self.learnable_weights_names();
            let weights_data = self.learnable_weights_data();

            for (i, (name, weight)) in names.iter().zip(weights_data).enumerate() {
                let mut capnp_weight = weights.borrow().get(i as u32);
                capnp_weight.set_name(name);

                let mut weight_lock = weight.write().unwrap();
                weight_lock.sync(native_backend.device()).unwrap();

                let mut tensor = capnp_weight.init_tensor();
                {
                    let mut tensor_shape = tensor.borrow().init_shape(weight_lock.desc().len() as u32);
                    for (i, dim) in weight_lock.desc().iter().enumerate() {
                        tensor_shape.set(i as u32, *dim as u64);
                    }
                }
                {
                    let native_slice = weight_lock.get(native_backend.device()).unwrap().as_native().unwrap().as_slice::<f32>();
                    let mut tensor_data = tensor.borrow().init_data(native_slice.len() as u32);
                    for (i, datum) in native_slice.iter().enumerate() {
                        tensor_data.set(i as u32, *datum);
                    }
                }
            }
        }
    }
}

impl<B: IBackend + LayerOps<f32> + 'static> Layer<B> {
    /// Creates a new Layer from a [LayerConfig][1].
    /// [1]: ./struct.LayerConfig.html
    pub fn from_config(backend: Rc<B>, config: &LayerConfig) -> Layer<B> {
        let cl = config.clone();
        let cfg = Box::<LayerConfig>::new(cl);
        let mut layer = Layer {
            name: cfg.name.clone(),

            needs_backward: true,

            weights_data: Vec::new(),
            weights_gradient: Vec::new(),
            learnable_weights: Vec::new(),
            weight_propagate_down: Vec::new(),
            weights_lr: Vec::new(),
            weights_weight_decay: Vec::new(),
            weights_display_names: Vec::new(),

            input_blobs_data: Vec::new(),
            input_blobs_gradient: Vec::new(),
            input_blob_names: Vec::new(),
            input_need_backwards: Vec::new(),

            output_blobs_data: Vec::new(),
            output_blobs_gradient: Vec::new(),
            output_blob_names: Vec::new(),
            loss: vec![1f32, 1f32, 1f32],

            blob_names: HashMap::new(),

            backend: backend.clone(),

            worker: Layer::<B>::worker_from_config(backend, &cfg),
            config: cfg,
        };
        layer.expose_inputs();
        layer.expose_outputs();

        layer
    }

    /// Helper for [from_config] to match a [LayerType][2] to its [implementation][3].
    /// [1]: #method.from_config
    /// [2]: ./enum.LayerType.html
    /// [3]: ../layers/index.html
    fn worker_from_config(backend: Rc<B>, config: &LayerConfig) -> Box<ILayer<B>> {
        match config.layer_type.clone() {
            #[cfg(all(feature="cuda", not(feature="native")))]
            LayerType::Convolution(layer_config) => Box::new(Convolution::from_config(&layer_config)),
            LayerType::Linear(layer_config) => Box::new(Linear::from_config(&layer_config)),
            LayerType::LogSoftmax => Box::new(LogSoftmax::default()),
            #[cfg(all(feature="cuda", not(feature="native")))]
            LayerType::Pooling(layer_config) => Box::new(Pooling::from_config(&layer_config)),
            LayerType::Sequential(layer_config) => Box::new(Sequential::from_config(backend, &layer_config)),
            LayerType::Softmax => Box::new(Softmax::default()),
            LayerType::ReLU => Box::new(ReLU),
            LayerType::Sigmoid => Box::new(Sigmoid),
            LayerType::NegativeLogLikelihood(layer_config) => Box::new(NegativeLogLikelihood::from_config(&layer_config)),
            LayerType::Reshape(layer_config) => Box::new(Reshape::from_config(&layer_config)),
        }
    }
}

/// A Layer in a Neural Network that can handle forward and backward of a computation step.
pub trait ILayer<B: IBackend> : ComputeOutput<f32, B> + ComputeInputGradient<f32, B> + ComputeParametersGradient<f32, B> {
    /// Initialize the layer for computation.
    ///
    /// Allows for layer-specific one time setup, e.g. precomputing constant values.
    fn init(&mut self, backend: Rc<B>) {}

    /// Adjust to shapes of the output blobs to fit the shapes of the input blobs.
    ///
    /// Should be called during Layer initalization, after [init][2].
    ///
    /// **Caution**: `input_data` should only be reshaped, but not resized.
    ///
    /// [2]: #method.init
    fn reshape(&mut self,
               backend: Rc<B>,
               input_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
               input_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
               weights_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
               weights_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>,
               output_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
               output_gradient: &mut Vec<ArcLock<SharedTensor<f32>>>) {}

    /// Adjust size of shared workspace.
    ///
    /// Is used by layers that need a workspace.
    /// The layer should either:
    ///
    /// - leave the workspace as is if it bigger than required by this layer
    /// - resize the workspace to the required size if smaller
    /// - create the workspace if the `workspace` is `None`
    ///
    /// The reference to the workspace should be saved in the layer.
    fn resize_shared_workspace(&mut self, backend: Rc<B>, workspace: Option<ArcLock<SharedTensor<u8>>>) -> Option<ArcLock<SharedTensor<u8>>> {
        workspace
    }

    /// Compute the [feedforward][1] layer output using the provided Backend.
    /// [1]: https://en.wikipedia.org/wiki/Feedforward_neural_network
    ///
    /// Aquires read locks for the input tensors
    /// and write locks for the output tensors to ensure sequential computation,
    /// and then passes them to computation method specific function ([forward_cpu][4]).
    ///
    /// [3]: #method.forward_cpu
    #[cfg_attr(lint, allow(map_clone))]
    fn forward(&self,
               backend: &B,
               input_data: &[ArcLock<SharedTensor<f32>>],
               weights_data: &[ArcLock<SharedTensor<f32>>],
               output_data: &mut [ArcLock<SharedTensor<f32>>]) {
        // aquire all the locks
        let inp: Vec<_> = input_data.iter().map(|b| b.read().unwrap()).collect();
        let input_data_: Vec<&SharedTensor<f32>> = inp.iter().enumerate().map(|(_, val)| &**val).collect();

        let wgts: Vec<_> = weights_data.iter().map(|w| w.read().unwrap()).collect();
        let weights_data_: Vec<&SharedTensor<f32>> = wgts.iter().enumerate().map(|(_, val)| &**val).collect();

        let out_ref = output_data.iter().cloned().collect::<Vec<_>>();
        let mut out = &mut out_ref.iter().map(|b| b.write().unwrap()).collect::<Vec<_>>();
        let mut output_w = &mut out.iter_mut().map(|a| a).collect::<Vec<_>>();
        let mut output_data_: Vec<&mut SharedTensor<f32>> = output_w.iter_mut().enumerate().map(|(_, val)| &mut ***val).collect();

        self.compute_output(backend, &weights_data_, &input_data_, &mut output_data_);
    }

    /// Compute the [backpropagation][1] input gradient using the provided backend.
    /// [1]: https://en.wikipedia.org/wiki/Backpropagation
    ///
    /// Aquires write locks for the input blobs to ensure sequential computation,
    /// and then do a [compute_input_gradient][3].
    ///
    /// [3]: ./trait.ComputeInputGradient.html#method.compute_input_gradient
    #[cfg_attr(lint, allow(map_clone))]
    fn backward_input(&self,
                backend: &B,
                weights_data: &[ArcLock<SharedTensor<f32>>],
                output_data: &[ArcLock<SharedTensor<f32>>],
                output_gradients: &[ArcLock<SharedTensor<f32>>],
                input_data: &[ArcLock<SharedTensor<f32>>],
                input_gradients: &mut [ArcLock<SharedTensor<f32>>]) {
        let wgts_data: Vec<_> = weights_data.iter().map(|b| b.read().unwrap()).collect();
        let weights_data_: Vec<&SharedTensor<f32>> = wgts_data.iter().enumerate().map(|(_, val)| &**val).collect();
        let out_data: Vec<_> = output_data.iter().map(|b| b.read().unwrap()).collect();
        let output_data_: Vec<&SharedTensor<f32>> = out_data.iter().enumerate().map(|(_, val)| &**val).collect();
        let out_gradient: Vec<_> = output_gradients.iter().map(|b| b.read().unwrap()).collect();
        let output_gradients_: Vec<&SharedTensor<f32>> = out_gradient.iter().enumerate().map(|(_, val)| &**val).collect();
        let inp_data: Vec<_> = input_data.iter().map(|b| b.read().unwrap()).collect();
        let input_data_: Vec<&SharedTensor<f32>> = inp_data.iter().enumerate().map(|(_, val)| &**val).collect();
        let btm_gradient_ref = input_gradients.iter().cloned().collect::<Vec<_>>();
        let mut btm_gradient = &mut btm_gradient_ref.iter().map(|b| b.write().unwrap()).collect::<Vec<_>>();
        let mut input_gradient = &mut btm_gradient.iter_mut().map(|a| a).collect::<Vec<_>>();
        let mut input_gradients_: Vec<&mut SharedTensor<f32>> = input_gradient.iter_mut().enumerate().map(|(_, val)| &mut ***val).collect();

        self.compute_input_gradient(backend, &weights_data_, &output_data_, &output_gradients_, &input_data_, &mut input_gradients_);
    }

    /// Compute the [backpropagation][1] parameters gradient using the provided backend.
    /// [1]: https://en.wikipedia.org/wiki/Backpropagation
    ///
    /// Aquires write locks for the input blobs to ensure sequential computation,
    /// and then do a [compute_parameters_gradient][4].
    ///
    /// [4]: ./trait.ComputeParametersGradient.html#method.compute_parameters_gradient
    #[cfg_attr(lint, allow(map_clone))]
    fn backward_parameters(&self,
                backend: &B,
                output_data: &[ArcLock<SharedTensor<f32>>],
                output_gradients: &[ArcLock<SharedTensor<f32>>],
                input_data: &[ArcLock<SharedTensor<f32>>],
                weights_gradients: &mut [ArcLock<SharedTensor<f32>>]) {
        let out_data: Vec<_> = output_data.iter().map(|b| b.read().unwrap()).collect();
        let output_data_: Vec<&SharedTensor<f32>> = out_data.iter().enumerate().map(|(_, val)| &**val).collect();
        let out_gradients: Vec<_> = output_gradients.iter().map(|b| b.read().unwrap()).collect();
        let output_gradients_: Vec<&SharedTensor<f32>> = out_gradients.iter().enumerate().map(|(_, val)| &**val).collect();
        let inp_data: Vec<_> = input_data.iter().map(|b| b.read().unwrap()).collect();
        let input_data_: Vec<&SharedTensor<f32>> = inp_data.iter().enumerate().map(|(_, val)| &**val).collect();
        let wgt_gradient_ref = weights_gradients.iter().cloned().collect::<Vec<_>>();
        let mut wgt_gradient = &mut wgt_gradient_ref.iter().map(|b| b.write().unwrap()).collect::<Vec<_>>();
        let mut weights_gradient = &mut wgt_gradient.iter_mut().map(|a| a).collect::<Vec<_>>();
        let mut weights_gradients_: Vec<&mut SharedTensor<f32>> = weights_gradient.iter_mut().enumerate().map(|(_, val)| &mut ***val).collect();

        self.compute_parameters_gradient(backend, &output_data_, &output_gradients_, &input_data_, &mut weights_gradients_);
    }

    /// Synchronize the blobs before doing a forward or backward operation.
    ///
    /// This is necessary because the forward_layer and backward_layer methods only immutably
    /// borrow the corresponding input blobs and weights which they are not supposed to change.
    /// However synchronizing all blobs to the same device may be neccessary for some computations,
    /// which can only be done with a mutable borrow.
    fn sync(&self,
            backend: &B,
            input_data: &mut [ArcLock<SharedTensor<f32>>],
            input_gradients: &mut [ArcLock<SharedTensor<f32>>],
            weights_data: &mut [ArcLock<SharedTensor<f32>>],
            weights_gradients: &mut [ArcLock<SharedTensor<f32>>],
            output_data: &mut Vec<ArcLock<SharedTensor<f32>>>,
            output_gradients: &mut Vec<ArcLock<SharedTensor<f32>>>) {
        if self.sync_native() {
            let backend = native_backend();
            for tensor in input_data {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in input_gradients {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in weights_data {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in weights_gradients {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in output_data {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in output_gradients {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
        } else {
            for tensor in input_data {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in input_gradients {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in weights_data {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in weights_gradients {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in output_data {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
            for tensor in output_gradients {
                let mut sync = tensor.write().unwrap();
                match sync.add_device(backend.device()) { _ => sync.sync(backend.device()).unwrap() }
            }
        }
    }

    /// Return whether "anonymous" output blobs are created automatically for the layer.
    ///
    /// If this method returns true, Network::init will create enough "anonymous" output
    /// blobs to fulfill the requirement specified by [exact_num_output_blobs][1] or
    /// [min_output_blobs][2].
    /// [1]: #method.exact_num_output_blobs
    /// [2]: #method.min_output_blobs
    fn auto_output_blobs(&self) -> bool {
        false
    }
    /// Returns the minimum number of output blobs required by the layer,
    /// or 0 if no minimum number is required.
    ///
    /// This method should be overridden to return a positive value if your
    /// layer expects some minimum number of output blobs.
    fn min_output_blobs(&self) -> usize {
        0
    }
    /// Returns the exact number of output blobs required by the layer,
    /// or `None` if no exact number is required.
    ///
    /// This method should be overridden to return a positive value if your
    /// layer expects some exact number of output blobs.
    fn exact_num_output_blobs(&self) -> Option<usize> {
        None
    }
    /// Return whether weight blobs are created automatically for the layer.
    ///
    /// If this method returns true, Network::init will create a weight blob
    /// for every output blob.
    fn auto_weight_blobs(&self) -> bool {
        false
    }
    /// Returns the exact number of input blobs required by the layer,
    /// or `None` if no exact number is required.
    ///
    /// This method should be overridden to return a positive value if your
    /// layer expects some exact number of input blobs.
    fn exact_num_input_blobs(&self) -> Option<usize> {
        None
    }
    /// Return whether to allow force_backward for a given input blob index.
    ///
    /// If allow_force_backward(i) == false, we will ignore the force_backward
    /// setting and backpropagate to blob i only if it needs gradient information
    /// (as is done when force_backward == false).
    fn allow_force_backward(&self, input_id: usize) -> bool {
        true
    }
    /// Return wether a simple native backend should be used to [sync][1] instead of the default backend.
    /// [1]: #method.sync
    ///
    /// If `false` is returned the default backend will be used, otherwise a new native backend
    /// will be created and provided as argument to `sync`.
    fn sync_native(&self) -> bool {
        false
    }
    /// Return wether the computations of a layer should be done in-place (the output will be written where the input was read from).
    ///
    /// Doing computations in place reduces the memory required for layers.
    ///
    /// If `false` is returned the layer behaves as normal, otherwise
    /// if a layer is provided a identiacla "input" and "output", it will only be supplied an
    /// "output_data" when doing a `compute_output`.
    fn compute_in_place(&self) -> bool {
        false
    }

    /// Return wether the layer is a container.
    ///
    /// This turns of certain behaviour for containers which would lead to problems:
    /// - RwLocks will not be aquired for forward/backward since it would lead to deadlocks.
    fn is_container(&self) -> bool {
        false
    }

    /// Return the associated loss weight for a given output blob index.
    ///
    /// If loss_weight(i) == `None`, no loss will be calculated for the output blob.
    ///
    /// This is usually overridden by loss layers.
    fn loss_weight(&self, output_id: usize) -> Option<f32> {
        None
    }

    /// Return the input tensors of the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the tensors are not easily exposable.
    fn inputs_data(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>> {
        None
    }

    /// Return the gradients of the input tensors of the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the tensors are not easily exposable.
    fn inputs_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>> {
        None
    }

    /// Return the output tensors of the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the tensors are not easily exposable.
    fn outputs_data(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>> {
        None
    }

    /// Return the gradients of the output tensors of the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the tensors are not easily exposable.
    fn outputs_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>> {
        None
    }

    /// Return the learnable weights inside the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the weights are not easily exposable.
    fn learnable_weights(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>> {
        None
    }

    /// Return the gradients for the learnable weights inside the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the weights are not easily exposable.
    fn learnable_weights_gradients(&self) -> Option<Vec<ArcLock<SharedTensor<f32>>>> {
        None
    }

    /// Return the names of the learnable weights inside the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the weights are not easily exposable.
    fn learnable_weights_names(&self) -> Option<Vec<String>> {
        None
    }

    /// Return the learning rates for the learnable weights inside the layer.
    ///
    /// This should only be overridden by container layers,
    /// where the weights are not easily exposable.
    fn learnable_weights_lr(&self) -> Option<Vec<Option<f32>>> {
        None
    }
}

/// A Layer that can compute the output for a given input.
pub trait ComputeOutput<T, B: IBackend> {
    /// Compute output for given input and write them into `output_data`.
    fn compute_output(&self,
                      backend: &B,
                      weights_data: &[&SharedTensor<T>],
                      input_data: &[&SharedTensor<T>],
                      output_data: &mut [&mut SharedTensor<T>]);
}

/// A Layer that can compute the gradient with respect to its input.
pub trait ComputeInputGradient<T, B: IBackend> {
    /// Compute gradients with respect to the inputs and write them into `input_gradients`.
    fn compute_input_gradient(&self,
                              backend: &B,
                              weights_data: &[&SharedTensor<T>],
                              output_data: &[&SharedTensor<T>],
                              output_gradients: &[&SharedTensor<T>],
                              input_data: &[&SharedTensor<T>],
                              input_gradients: &mut [&mut SharedTensor<T>]);
}

/// A Layer that can compute the gradient with respect to its parameters (= weights, bias, etc.).
pub trait ComputeParametersGradient<T, B: IBackend> {
    /// Compute gradients with respect to the parameters and write them into `parameters_gradients`.
    fn compute_parameters_gradient(&self,
                                   backend: &B,
                                   output_data: &[&SharedTensor<T>],
                                   output_gradients: &[&SharedTensor<T>],
                                   input_data: &[&SharedTensor<T>],
                                   parameters_gradients: &mut [&mut SharedTensor<T>]) {}
}

impl<B: IBackend> fmt::Debug for ILayer<B> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "({})", "ILayer")
    }
}

#[derive(Debug, Clone)]
/// Layer Configuration Struct
pub struct LayerConfig {
    /// The name of the Layer
    pub name: String,

    /// The type of the Layer
    pub layer_type: LayerType,

    /// The name for each output Blob
    pub outputs: Vec<String>,

    /// The name for each input Blob
    pub inputs: Vec<String>,

    /// Specifies training configuration for each weight blob.
    pub params: Vec<WeightConfig>,

    /// Specifies on which inputs the backpropagation should be skipped.
    /// The size must be either 0 or equal to the number of inputs.
    pub propagate_down: Vec<bool>,
}

#[derive(Debug, Clone)]
/// The Layer Types
pub enum LayerType {
    // Common layers
    /// Convolution Layer
    #[cfg(all(feature="cuda", not(feature="native")))]
    Convolution(ConvolutionConfig),
    /// Linear Layer
    Linear(LinearConfig),
    /// LogSoftmax Layer
    LogSoftmax,
    /// Pooling Layer
    #[cfg(all(feature="cuda", not(feature="native")))]
    Pooling(PoolingConfig),
    /// Sequential Layer
    Sequential(SequentialConfig),
    /// Softmax Layer
    Softmax,
    // Activation layers
    /// ReLU Layer
    ReLU,
    /// Sigmoid Layer
    Sigmoid,
    // Loss layers
    /// NegativeLogLikelihood Layer
    NegativeLogLikelihood(NegativeLogLikelihoodConfig),
    // Utility layers
    /// Reshape Layer
    Reshape(ReshapeConfig),
}

impl LayerType {
    /// Returns wether the LayerType supports in-place operations.
    pub fn supports_in_place(&self) -> bool {
        match *self {
            #[cfg(all(feature="cuda", not(feature="native")))]
            LayerType::Convolution(_) => false,
            LayerType::Linear(_) => false,
            LayerType::LogSoftmax => false,
            #[cfg(all(feature="cuda", not(feature="native")))]
            LayerType::Pooling(_) => false,
            LayerType::Sequential(_) => false,
            LayerType::Softmax => false,
            #[cfg(all(feature="cuda", not(feature="native")))]
            LayerType::ReLU => true,
            #[cfg(feature="native")]
            LayerType::ReLU => false,
            #[cfg(all(feature="cuda", not(feature="native")))]
            LayerType::Sigmoid => true,
            #[cfg(feature="native")]
            LayerType::Sigmoid => false,
            LayerType::NegativeLogLikelihood(_) => false,
            LayerType::Reshape(_) => true,
        }
    }

}

impl<'a> CapnpWrite<'a> for LayerType {
    type Builder = capnp_layer_type::Builder<'a>;

    /// Write the LayerType into a capnp message.
    fn write_capnp(&self, builder: &mut Self::Builder) {
        match self {
            #[cfg(all(feature="cuda", not(feature="native")))]
            &LayerType::Convolution(ref cfg) => { let ref mut config = builder.borrow().init_convolution(); cfg.write_capnp(config); },
            &LayerType::Linear(ref cfg) => { let ref mut config = builder.borrow().init_linear(); cfg.write_capnp(config); },
            &LayerType::LogSoftmax => { builder.set_log_softmax(()) },
            #[cfg(all(feature="cuda", not(feature="native")))]
            &LayerType::Pooling(ref cfg) => { let ref mut config = builder.borrow().init_pooling(); cfg.write_capnp(config); },
            &LayerType::Sequential(ref cfg) => { let ref mut config = builder.borrow().init_sequential(); cfg.write_capnp(config); },
            &LayerType::Softmax => { builder.set_softmax(()) },
            #[cfg(all(feature="cuda", not(feature="native")))]
            &LayerType::ReLU => { builder.set_relu(()) },
            #[cfg(feature="native")]
            &LayerType::ReLU => { builder.set_relu(()) },
            #[cfg(all(feature="cuda", not(feature="native")))]
            &LayerType::Sigmoid => { builder.set_sigmoid(()) },
            #[cfg(feature="native")]
            &LayerType::Sigmoid => { builder.set_sigmoid(()) },
            &LayerType::NegativeLogLikelihood(ref cfg) => { let ref mut config = builder.borrow().init_negative_log_likelihood(); cfg.write_capnp(config); },
            &LayerType::Reshape(ref cfg) => { let ref mut config = builder.borrow().init_reshape(); cfg.write_capnp(config); },
        }
    }
}

impl<'a> CapnpRead<'a> for LayerType {
    type Reader = capnp_layer_type::Reader<'a>;

    fn read_capnp(reader: Self::Reader) -> Self {
        match reader.which().unwrap() {
            #[cfg(all(feature="cuda", not(feature="native")))]
            capnp_layer_type::Which::Convolution(read_config) => { let config = ConvolutionConfig::read_capnp(read_config.unwrap()); LayerType::Convolution(config) },
            #[cfg(not(all(feature="cuda", not(feature="native"))))]
            capnp_layer_type::Which::Convolution(_) => { panic!("Can not load Network because Convolution layer is not supported with the used feature flags.") },
            capnp_layer_type::Which::Linear(read_config) => { let config = LinearConfig::read_capnp(read_config.unwrap()); LayerType::Linear(config) },
            capnp_layer_type::Which::LogSoftmax(read_config) => { LayerType::LogSoftmax },
            #[cfg(all(feature="cuda", not(feature="native")))]
            capnp_layer_type::Which::Pooling(read_config) => { let config = PoolingConfig::read_capnp(read_config.unwrap()); LayerType::Pooling(config) },
            #[cfg(not(all(feature="cuda", not(feature="native"))))]
            capnp_layer_type::Which::Pooling(_) => { panic!("Can not load Network because Pooling layer is not supported with the used feature flags.") },
            capnp_layer_type::Which::Sequential(read_config) => { let config = SequentialConfig::read_capnp(read_config.unwrap()); LayerType::Sequential(config) },
            capnp_layer_type::Which::Softmax(_) => { LayerType::Softmax },
            capnp_layer_type::Which::Relu(_) => { LayerType::ReLU },
            capnp_layer_type::Which::Sigmoid(_) => { LayerType::Sigmoid },
            capnp_layer_type::Which::NegativeLogLikelihood(read_config) => { let config = NegativeLogLikelihoodConfig::read_capnp(read_config.unwrap()); LayerType::NegativeLogLikelihood(config) },
            capnp_layer_type::Which::Reshape(read_config) => { let config = ReshapeConfig::read_capnp(read_config.unwrap()); LayerType::Reshape(config) },
        }
    }
}

impl LayerConfig {
    /// Creates a new LayerConfig
    pub fn new<L: Into<LayerType>>(name: &str, layer_type: L) -> LayerConfig {
        LayerConfig {
            name: name.to_owned(),
            layer_type: layer_type.into(),

            outputs: Vec::new(),
            inputs: Vec::new(),

            params: Vec::new(),
            propagate_down: Vec::new(),
        }
    }

    /// Returns the Name of the requested output Blob
    pub fn output(&self, output_id: usize) -> Option<&String> {
        self.outputs.get(output_id)
    }

    /// Returns the number of output Blobs
    pub fn outputs_len(&self) -> usize {
        self.outputs.len()
    }

    /// Add a output by name
    pub fn add_output(&mut self, output_name: &str) {
        self.outputs.push(output_name.to_owned());
    }

    /// Returns the Name of the requested input Blob
    pub fn input(&self, input_id: usize) -> Option<&String> {
        self.inputs.get(input_id)
    }

    /// Returns the number of input Blobs
    pub fn inputs_len(&self) -> usize {
        self.inputs.len()
    }

    /// Add a input by name
    pub fn add_input(&mut self, input_name: &str) {
        self.inputs.push(input_name.to_owned());
    }

    /// Returns the requested WeightConfig
    pub fn param(&self, param_id: usize) -> Option<&WeightConfig> {
        self.params.get(param_id)
    }

    /// Returns the number of params
    pub fn params_len(&self) -> usize {
        self.params.len()
    }

    /// Check if the configured parameters make sense.
    pub fn validate(&self) -> Result<(), &'static str> {
        try!(self.validate_propagate_down_len());
        Ok(())
    }

    /// Checks if propagate down length makes sense.
    fn validate_propagate_down_len(&self) -> Result<(), &'static str> {
        if self.propagate_down.is_empty() || self.propagate_down.len() == self.inputs_len() {
            Ok(())
        } else {
            Err("propagate_down config must be specified either 0 or inputs_len times")
        }
    }
}

impl<'a> CapnpWrite<'a> for LayerConfig {
    type Builder = capnp_layer_config::Builder<'a>;

    /// Write the LayerConfig into a capnp message.
    fn write_capnp(&self, builder: &mut Self::Builder) {
        builder.set_name(&self.name);
        {
            let mut layer_type = builder.borrow().init_layer_type();
            self.layer_type.write_capnp(&mut layer_type);
        }
        {
            let mut outputs = builder.borrow().init_outputs(self.outputs.len() as u32);
            for (i, output) in self.outputs.iter().enumerate() {
                outputs.set(i as u32, &output);
            }
        }
        {
            let mut inputs = builder.borrow().init_inputs(self.inputs.len() as u32);
            for (i, input) in self.inputs.iter().enumerate() {
                inputs.set(i as u32, &input);
            }
        }
        {
            let mut params = builder.borrow().init_params(self.params.len() as u32);
            for (i, param) in self.params.iter().enumerate() {
                let ref mut capnp_param = params.borrow().get(i as u32);
                param.write_capnp(capnp_param);
            }
        }
        {
            let mut propagate_down = builder.borrow().init_propagate_down(self.propagate_down.len() as u32);
            for (i, input) in self.propagate_down.iter().enumerate() {
                propagate_down.set(i as u32, *input);
            }
        }
    }
}

impl<'a> CapnpRead<'a> for LayerConfig {
    type Reader = capnp_layer_config::Reader<'a>;

    fn read_capnp(reader: Self::Reader) -> Self {
        let name = reader.get_name().unwrap().to_owned();
        let layer_type = LayerType::read_capnp(reader.get_layer_type());

        let read_outputs = reader.get_outputs().unwrap();
        let mut outputs = Vec::new();
        for i in 0..read_outputs.len() {
            outputs.push(read_outputs.get(i).unwrap().to_owned())
        }
        let read_inputs = reader.get_inputs().unwrap();
        let mut inputs = Vec::new();
        for i in 0..read_inputs.len() {
            inputs.push(read_inputs.get(i).unwrap().to_owned())
        }

        let read_params = reader.get_params().unwrap();
        let mut params = Vec::new();
        for i in 0..read_params.len() {
            params.push(WeightConfig::read_capnp(read_params.get(i)))
        }

        let read_propagate_down = reader.get_propagate_down().unwrap();
        let mut propagate_down = Vec::new();
        for i in 0..read_propagate_down.len() {
            propagate_down.push(read_propagate_down.get(i))
        }

        LayerConfig {
            name: name,
            layer_type: layer_type,
            outputs: outputs,
            inputs: inputs,
            params: params,
            propagate_down: propagate_down,
        }
    }
}