1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A collection of numeric types and traits for Rust. //! //! This includes new types for big integers, rationals, and complex numbers, //! new traits for generic programming on numeric properties like `Integer`, //! and generic range iterators. //! //! ## Example //! //! This example uses the BigRational type and [Newton's method][newt] to //! approximate a square root to arbitrary precision: //! //! ``` //! extern crate num; //! # #[cfg(all(feature = "bigint", feature="rational"))] //! # mod test { //! //! use num::FromPrimitive; //! use num::bigint::BigInt; //! use num::rational::{Ratio, BigRational}; //! //! # pub //! fn approx_sqrt(number: u64, iterations: usize) -> BigRational { //! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap()); //! let mut approx = start.clone(); //! //! for _ in 0..iterations { //! approx = (&approx + (&start / &approx)) / //! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap()); //! } //! //! approx //! } //! # } //! # #[cfg(not(all(feature = "bigint", feature="rational")))] //! # mod test { pub fn approx_sqrt(n: u64, _: usize) -> u64 { n } } //! # use test::approx_sqrt; //! //! fn main() { //! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416 //! } //! //! ``` //! //! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method #![doc(html_logo_url = "http://rust-num.github.io/num/rust-logo-128x128-blk-v2.png", html_favicon_url = "http://rust-num.github.io/num/favicon.ico", html_root_url = "http://rust-num.github.io/num/", html_playground_url = "http://play.rust-lang.org/")] #[cfg(feature = "rustc-serialize")] extern crate rustc_serialize; // Some of the tests of non-RNG-based functionality are randomized using the // RNG-based functionality, so the RNG-based functionality needs to be enabled // for tests. #[cfg(any(feature = "rand", all(feature = "bigint", test)))] extern crate rand; #[cfg(feature = "bigint")] pub use bigint::{BigInt, BigUint}; #[cfg(feature = "rational")] pub use rational::Rational; #[cfg(all(feature = "rational", feature="bigint"))] pub use rational::BigRational; #[cfg(feature = "complex")] pub use complex::Complex; pub use integer::Integer; pub use iter::{range, range_inclusive, range_step, range_step_inclusive}; pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded, Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast}; #[cfg(test)] use std::hash; use std::ops::{Mul}; #[cfg(feature = "bigint")] pub mod bigint; pub mod complex; pub mod integer; pub mod iter; pub mod traits; #[cfg(feature = "rational")] pub mod rational; /// Returns the additive identity, `0`. #[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() } /// Returns the multiplicative identity, `1`. #[inline(always)] pub fn one<T: One>() -> T { One::one() } /// Computes the absolute value. /// /// For `f32` and `f64`, `NaN` will be returned if the number is `NaN` /// /// For signed integers, `::MIN` will be returned if the number is `::MIN`. #[inline(always)] pub fn abs<T: Signed>(value: T) -> T { value.abs() } /// The positive difference of two numbers. /// /// Returns zero if `x` is less than or equal to `y`, otherwise the difference /// between `x` and `y` is returned. #[inline(always)] pub fn abs_sub<T: Signed>(x: T, y: T) -> T { x.abs_sub(&y) } /// Returns the sign of the number. /// /// For `f32` and `f64`: /// /// * `1.0` if the number is positive, `+0.0` or `INFINITY` /// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// * `NaN` if the number is `NaN` /// /// For signed integers: /// /// * `0` if the number is zero /// * `1` if the number is positive /// * `-1` if the number is negative #[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() } /// Raises a value to the power of exp, using exponentiation by squaring. /// /// # Example /// /// ```rust /// use num; /// /// assert_eq!(num::pow(2i8, 4), 16); /// assert_eq!(num::pow(6u8, 3), 216); /// ``` #[inline] pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T { if exp == 0 { return T::one() } while exp & 1 == 0 { base = base.clone() * base; exp >>= 1; } if exp == 1 { return base } let mut acc = base.clone(); while exp > 1 { exp >>= 1; base = base.clone() * base; if exp & 1 == 1 { acc = acc * base.clone(); } } acc } /// Raises a value to the power of exp, returning `None` if an overflow occurred. /// /// Otherwise same as the `pow` function. /// /// # Example /// /// ```rust /// use num; /// /// assert_eq!(num::checked_pow(2i8, 4), Some(16)); /// assert_eq!(num::checked_pow(7i8, 8), None); /// assert_eq!(num::checked_pow(7u32, 8), Some(5_764_801)); /// ``` #[inline] pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> { if exp == 0 { return Some(T::one()) } macro_rules! optry { ( $ expr : expr ) => { if let Some(val) = $expr { val } else { return None } } } while exp & 1 == 0 { base = optry!(base.checked_mul(&base)); exp >>= 1; } if exp == 1 { return Some(base) } let mut acc = base.clone(); while exp > 1 { exp >>= 1; base = optry!(base.checked_mul(&base)); if exp & 1 == 1 { acc = optry!(acc.checked_mul(&base)); } } Some(acc) } #[cfg(test)] fn hash<T: hash::Hash>(x: &T) -> u64 { use std::hash::Hasher; let mut hasher = hash::SipHasher::new(); x.hash(&mut hasher); hasher.finish() }